Comparing Dualities in the K(n)-local Category

In their work on the period map and the dualizing sheaf for Lubin-Tate space, Gross and the second author wrote down an equivalence between the Spanier-Whitehead and Brown-Comenetz duals of certain type $n$-complexes in the $K(n)$-local category at large primes. In the culture of the time, these results were accessible to educated readers, but this seems no longer to be the case; therefore, in this note we give the details. Because we are at large primes, the key result is algebraic: in the Picard group of Lubin-Tate space, two important invertible sheaves become isomorphic modulo $p$.

[1]  M. Hopkins Equivariant vector bundles on the Lubin-Tate moduli space , 2009 .

[2]  J. Adams,et al.  Stable homotopy and generalised homology , 1974 .

[3]  M. Hopkins,et al.  Structured Ring Spectra: Moduli spaces of commutative ring spectra , 2004 .

[4]  P. Goerss,et al.  On Hopkins’ Picard groups for the prime 3 and chromatic level 2 , 2012, 1210.7033.

[5]  Jon P. May,et al.  Derived functors of I-adic completion and local homology , 1992 .

[6]  H. Henn Centralizers of elementary abelian $p$-subgroups and \mod-$p$ cohomology of profinite groups , 1998 .

[7]  M. Hopkins,et al.  Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups , 2004 .

[8]  M. Behrens The homotopy groups of SE(2) at p⩾5 revisited , 2012 .

[9]  P. Goerss,et al.  The Brown-Comenetz dual of the K(2)-local sphere at the prime 3 , 2012, 1212.2836.

[10]  P. Goerss,et al.  The Homotopy of L 2 V (1) for the Prime 3 , 2003 .

[11]  Olivier Lader Une résolution projective pour le second groupe de Morava pour p ≥ 5 et applications , 2013 .

[12]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[13]  Paul G. Goerss,et al.  Constructing the determinant sphere using a Tate twist , 2018, Mathematische Zeitschrift.

[14]  A modular description of the K(2)-local sphere at the prime 3 , 2005, math/0507184.

[15]  M. Hopkins,et al.  Construction of elements in Picard groups , 1992 .

[16]  P. Goerss,et al.  Chromatic splitting for the K(2)–local sphere at p = 2 , 2017, Geometry & Topology.

[17]  Mark Hovey,et al.  Invertible Spectra in the E(n)‐Local Stable Homotopy Category , 1999 .

[18]  J. Tate,et al.  Formal moduli for one-parameter formal Lie groups , 1966 .

[19]  Katsumi Shimomuraa,et al.  The homotopy groups ∗ ( L 2 S 0 ) at the prime 3 , 2001 .

[20]  Mark Hovey,et al.  Morava K-theories and localisation , 1999 .

[21]  H. Toda On spectra realizing exterior parts of the steenrod algebra , 1971 .

[22]  M. Mahowald,et al.  The homotopy of the K(2)-local Moore spectrum at the prime 3 revisited , 2008 .

[23]  Drew Heard MORAVA MODULES AND THE $K(n)$-LOCAL PICARD GROUP , 2015, Bulletin of the Australian Mathematical Society.

[24]  Rodney Y. Sharp,et al.  Local Cohomology: An Algebraic Introduction with Geometric Applications , 1998 .

[25]  Piotr Pstrkagowski Chromatic Picard groups at large primes , 2018, 1811.05415.

[26]  Nasko Karamanov On Hopkins' Picard group Pic2 at the prime 3 , 2010 .

[27]  W. Dwyer,et al.  Gross-Hopkins duality and the Gorenstein condition , 2009, 0905.4777.

[28]  The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory , 1994, math/9401220.

[29]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[32]  M. Hopkins,et al.  The Action of the Morava Stabilizer Group on the Lubin-Tate Moduli Space of Lifts , 1995 .

[33]  M. Hopkins,et al.  Nilpotence and Stable Homotopy Theory II , 1992 .

[34]  Thomas Weigel,et al.  Cohomology of p-adic Analytic Groups , 2000 .