Comparing Dualities in the K(n)-local Category
暂无分享,去创建一个
[1] M. Hopkins. Equivariant vector bundles on the Lubin-Tate moduli space , 2009 .
[2] J. Adams,et al. Stable homotopy and generalised homology , 1974 .
[3] M. Hopkins,et al. Structured Ring Spectra: Moduli spaces of commutative ring spectra , 2004 .
[4] P. Goerss,et al. On Hopkins’ Picard groups for the prime 3 and chromatic level 2 , 2012, 1210.7033.
[5] Jon P. May,et al. Derived functors of I-adic completion and local homology , 1992 .
[6] H. Henn. Centralizers of elementary abelian $p$-subgroups and \mod-$p$ cohomology of profinite groups , 1998 .
[7] M. Hopkins,et al. Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups , 2004 .
[8] M. Behrens. The homotopy groups of SE(2) at p⩾5 revisited , 2012 .
[9] P. Goerss,et al. The Brown-Comenetz dual of the K(2)-local sphere at the prime 3 , 2012, 1212.2836.
[10] P. Goerss,et al. The Homotopy of L 2 V (1) for the Prime 3 , 2003 .
[11] Olivier Lader. Une résolution projective pour le second groupe de Morava pour p ≥ 5 et applications , 2013 .
[12] S. Ana,et al. Topology , 2018, International Journal of Mathematics Trends and Technology.
[13] Paul G. Goerss,et al. Constructing the determinant sphere using a Tate twist , 2018, Mathematische Zeitschrift.
[14] A modular description of the K(2)-local sphere at the prime 3 , 2005, math/0507184.
[15] M. Hopkins,et al. Construction of elements in Picard groups , 1992 .
[16] P. Goerss,et al. Chromatic splitting for the K(2)–local sphere at p = 2 , 2017, Geometry & Topology.
[17] Mark Hovey,et al. Invertible Spectra in the E(n)‐Local Stable Homotopy Category , 1999 .
[18] J. Tate,et al. Formal moduli for one-parameter formal Lie groups , 1966 .
[19] Katsumi Shimomuraa,et al. The homotopy groups ∗ ( L 2 S 0 ) at the prime 3 , 2001 .
[20] Mark Hovey,et al. Morava K-theories and localisation , 1999 .
[21] H. Toda. On spectra realizing exterior parts of the steenrod algebra , 1971 .
[22] M. Mahowald,et al. The homotopy of the K(2)-local Moore spectrum at the prime 3 revisited , 2008 .
[23] Drew Heard. MORAVA MODULES AND THE $K(n)$-LOCAL PICARD GROUP , 2015, Bulletin of the Australian Mathematical Society.
[24] Rodney Y. Sharp,et al. Local Cohomology: An Algebraic Introduction with Geometric Applications , 1998 .
[25] Piotr Pstrkagowski. Chromatic Picard groups at large primes , 2018, 1811.05415.
[26] Nasko Karamanov. On Hopkins' Picard group Pic2 at the prime 3 , 2010 .
[27] W. Dwyer,et al. Gross-Hopkins duality and the Gorenstein condition , 2009, 0905.4777.
[28] The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory , 1994, math/9401220.
[29] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[30] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[31] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[32] M. Hopkins,et al. The Action of the Morava Stabilizer Group on the Lubin-Tate Moduli Space of Lifts , 1995 .
[33] M. Hopkins,et al. Nilpotence and Stable Homotopy Theory II , 1992 .
[34] Thomas Weigel,et al. Cohomology of p-adic Analytic Groups , 2000 .