Fundamental aspects of solid oxide electrolyzer cell modelling and the application for the system level analysis

[1]  W. Bessler,et al.  Elementary Reaction Kinetics of the CO ∕ CO2 ∕ Ni ∕ YSZ Electrode , 2011 .

[2]  M. Shishkin,et al.  Hydrogen Oxidation at the Ni/Yttria-Stabilized Zirconia Interface: A Study Based on Density Functional Theory , 2010 .

[3]  Jonathan Deseure,et al.  Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description , 2013 .

[4]  N. Brandon,et al.  Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell , 2007 .

[5]  W. Bessler,et al.  The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes , 2007 .

[6]  V. Lawlor Highlighting of Critical Experimental Data for SOFC Modeling That is Missing From the Literature and Potential of N-IR Thermography for SOFC Study , 2012 .

[7]  S. Trasatti,et al.  The concept of absolute electrode potential an attempt at a calculation , 1974 .

[8]  Carl M. Stoots,et al.  Comparison of a One-Dimensional Model of a High-Temperature Solid-Oxide Electrolysis Stack with CFD and Experimental Results , 2005 .

[9]  D. A. Noren,et al.  Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models , 2005 .

[10]  O. Deutschmann,et al.  Methane reforming kinetics within a Ni–YSZ SOFC anode support , 2005 .

[11]  William J. Fleming,et al.  Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor , 1977 .

[12]  Andrew M. Colclasure,et al.  Modeling Electrochemical Oxidation of Hydrogen on Ni–YSZ Pattern Anodes , 2009 .

[13]  Xiaohua Deng,et al.  Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells , 2005 .

[14]  T. J. Kotas,et al.  The Exergy Method of Thermal Plant Analysis , 2012 .

[15]  James E. O'Brien,et al.  Parametric study of large-scale production of syngas via high-temperature co-electrolysis , 2007 .

[16]  Dennis Y.C. Leung,et al.  Parametric study of solid oxide steam electrolyzer for hydrogen production , 2007 .

[17]  W H Smart,et al.  Study of electrolytic dissociation of CO2-H2O using a solid oxide electrolyte. NASA CR-680. , 1967, NASA contractor report. NASA CR. United States. National Aeronautics and Space Administration.

[18]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[19]  C. Graves Recycling CO2 into Sustainable Hydrocarbon Fuels: Electrolysis of CO2 and H2O , 2010 .

[20]  I. Vinke,et al.  Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes. II. AC polarization characteristics , 1999 .

[21]  R. Streicher,et al.  Hydrogen production by high temperature electrolysis of water vapour , 1980 .

[22]  F. Goodridge Electrochemical hydrogen technologies , 1991 .

[23]  E. Kakaras,et al.  Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells , 2010 .

[24]  S. Chan,et al.  Anode Micro Model of Solid Oxide Fuel Cell , 2001 .

[25]  T. P. Gloria,et al.  Environmental science and technology , 2006 .

[26]  José Sánchez,et al.  Theoretical considerations on the modelling of transport in a three-phase electrode and application to a proton conducting solid oxide electrolysis cell , 2012 .

[27]  Josef Kallo,et al.  A validated multi‐scale model of a SOFC stack at elevated pressure , 2013 .

[28]  Albert Cirera,et al.  YSZ-Based Oxygen Sensors and the Use of Nanomaterials: A Review from Classical Models to Current Trends , 2009, J. Sensors.

[29]  K. R. Sridhar,et al.  Combined H2O/CO2 Solid Oxide Electrolysis for Mars In Situ Resource Utilization , 2004 .

[30]  Gerda Gahleitner Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications , 2013 .

[31]  J. O’Brien,et al.  CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy , 2005 .

[32]  K. Yoon,et al.  Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization , 2013 .

[33]  M. Mosleh,et al.  Analysis of self-sustaining recuperative solid oxide electrolysis systems , 2008 .

[34]  M. Sano,et al.  Zirconia-Based Potentiometric Sensors Using Metal Oxide Electrodes for Detection of Hydrocarbons , 2001 .

[35]  Ivar S. Ertesvåg,et al.  Exergy analysis of solid-oxide fuel-cell (SOFC) systems , 1997 .

[36]  Jarosław Milewski,et al.  Solid oxide fuel cell fuelled by biogases , 2009 .

[37]  Scott A. Barnett,et al.  High efficiency electrical energy storage using a methane–oxygen solid oxide cell , 2011 .

[38]  Yu Luo,et al.  Elementary reaction modeling of CO2/H2O co-electrolysis cell considering effects of cathode thickness , 2013 .

[39]  S. Jiang,et al.  Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .

[40]  W. Fawcett The ionic work function and its role in estimating absolute electrode potentials. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[41]  Ludwig J. Gauckler,et al.  Reaction kinetics of the Pt, O2(g)|c-ZrO2 system : precursor-mediated adsorption , 1999 .

[42]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[43]  Yixiang Shi,et al.  Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas , 2010 .

[44]  Carl M. Stoots,et al.  3D CFD model of a multi-cell high-temperature electrolysis stack , 2007 .

[45]  Xingjian Xue,et al.  Mathematical Modeling Analysis of Regenerative Solid Oxide Fuel Cells in Switching Mode Conditions , 2010 .

[46]  Anil V. Virkar,et al.  A Model for Solid Oxide Fuel Cell (SOFC) Stack Degradation , 2007 .

[47]  Wolfgang G. Bessler,et al.  A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models , 2005 .

[48]  Ellen Ivers-Tiffée,et al.  Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. , 2010, Physical chemistry chemical physics : PCCP.

[49]  M. Shishkin,et al.  Oxidation of H2, CH4, and CO Molecules at the Interface between Nickel and Yttria-Stabilized Zirconia: A Theoretical Study Based on DFT , 2009 .

[50]  D. Jeon A comprehensive CFD model of anode-supported solid oxide fuel cells , 2009 .

[51]  Francois L. E. Usseglio-Viretta,et al.  Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation , 2014 .

[52]  W. Doenitz,et al.  Concepts and design for scaling up high temperature water vapour electrolysis , 1982 .

[53]  M. Rafiuddin Ahmed,et al.  Blade design and performance testing of a small wind turbine rotor for low wind speed applications , 2013 .

[54]  S. Trasatti The “absolute” electrode potential—the end of the story , 1990 .

[55]  P. Kazempoor,et al.  Model validation and performance analysis of regenerative solid oxide cells: Electrolytic operation , 2014 .

[56]  S. Ebbesen,et al.  Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability , 2011 .

[57]  T. Ishihara,et al.  Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte , 2010 .

[58]  S. Trasatti The concept and physical meaning of absolute electrode potential: A Reassessment , 1982 .

[59]  S. Rashkeev,et al.  Atomic-scale mechanisms of oxygen electrode delamination in solid oxide electrolyzer cells , 2012 .

[60]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[61]  Andrea Lanzini,et al.  A comparative assessment on hydrogen production from low- and high-temperature electrolysis , 2013 .

[62]  Rebecca Taylor,et al.  In-Situ Monitoring of Solid Oxide Electrolysis Cells , 2013 .

[63]  Vinod M. Janardhanan,et al.  Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells , 2005 .

[64]  Paolo Iora,et al.  High efficiency process for the production of pure oxygen based on solid oxide fuel cell–solid oxide electrolyzer technology , 2009 .

[65]  Brigitte Grondin-Perez,et al.  Computing approach of cathodic process within solid oxide electrolysis cell: Experiments and continu , 2011 .

[66]  Jonathan Deseure,et al.  Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production , 2011 .

[67]  Jon G. Pharoah,et al.  Effective transport properties of the porous electrodes in solid oxide fuel cells , 2011 .

[68]  D. Jeon,et al.  A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells , 2006 .

[69]  Michael Synodis,et al.  A Model to Predict Percolation Threshold and Effective Conductivity of Infiltrated Electrodes for Solid Oxide Fuel Cells , 2013 .

[70]  Yoshio Matsuzaki,et al.  Electrochemical Oxidation of H 2 and CO in a H 2 ‐ H 2 O ‐ CO ‐ CO 2 System at the Interface of a Ni‐YSZ Cermet Electrode and YSZ Electrolyte , 2000 .

[71]  Yixiang Shi,et al.  Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide , 2014 .

[72]  Dennis Y.C. Leung,et al.  Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant , 2007 .

[73]  S. Jiang,et al.  An electrode kinetics study of H2 oxidation on Ni/Y2O3–ZrO2 cermet electrode of the solid oxide fuel cell , 1999 .

[74]  José Sánchez,et al.  Analytical calculation of transfers across a cermet for solid oxide fuel cells and electrolyzers , 2014 .

[75]  S. Jensen,et al.  Highly efficient high temperature electrolysis , 2008 .

[76]  H. K. Ho,et al.  Analysis of a Simple Solid Oxide Fuel Cell System with Gas Dynamic in Afterburner and Connecting Pipes , 2005 .

[77]  Jincan Chen,et al.  Electrochemical performance characteristics and optimum design strategies of a solid oxide electrolysis cell system for carbon dioxide reduction , 2013 .

[78]  Minfang Han,et al.  Role of initial microstructure on nickel-YSZ cathode degradation in solid oxide electrolysis cells , 2014 .

[79]  Phillip N. Hutton,et al.  A macro-level model for determining the performance characteristics of solid oxide fuel cells , 2004 .

[80]  H. S. Spacil,et al.  Electrochemical Dissociation of Water Vapor in Solid Oxide Electrolyte Cells II . Materials, Fabrication, and Properties , 1969 .

[81]  C. Adjiman,et al.  The Effects of Operating Conditions on the Performance of a Solid Oxide Steam Electrolyser: A Model‐Based Study , 2010 .

[82]  Nigel P. Brandon,et al.  Hydrogen production through steam electrolysis , 2012 .

[83]  Andreas Sumper,et al.  A review of energy storage technologies for wind power applications , 2012 .

[84]  Jeffrey W. Fergus,et al.  Sensing mechanism of non-equilibrium solid-electrolyte-based chemical sensors , 2010 .

[85]  Gowrishankar Chandran,et al.  Grid Integration of Wind Energy Conversion System , 2016 .

[86]  Yixiang Shi,et al.  Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell , 2011 .

[87]  W. Bessler,et al.  Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode , 2009 .

[88]  L. Gauckler,et al.  State-space modeling of the anodic SOFC system Ni, H2–H2O∣YSZ , 2002 .

[89]  J. Hjelm,et al.  Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes , 2014 .

[90]  E. Ivers-Tiffée,et al.  Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes , 2012 .

[91]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[92]  S. Chan,et al.  Energy and exergy analysis of simple solid-oxide fuel-cell power systems , 2002 .

[93]  M Manage,et al.  A techno-economic appraisal of hydrogen generation and the case for solid oxide electrolyser cells , 2011 .

[94]  V. Yurkiv,et al.  H2O chemisorption and H2 oxidation on yttria-stabilized zirconia: Density functional theory and temperature-programmed desorption studies , 2011 .

[95]  E. Ivers-Tiffée,et al.  Experimental and Modeling Study of the Impedance of Ni/YSZ Cermet Anodes , 2007 .

[96]  W. Dönitz,et al.  High-temperature electrolysis of water vapor—status of development and perspectives for application , 1985 .

[97]  Nigel P. Brandon,et al.  A one dimensional solid oxide electrolyzer-fuel cell stack model and its application to the analysis of a high efficiency system for oxygen production , 2012 .

[98]  Y. K. Chen-Wiegart,et al.  Three-Dimensional Microstructural Evolution of Ni- Yttria-Stabilized Zirconia Solid Oxide Fuel Cell Anodes At Elevated Temperatures , 2013 .

[99]  Khiam Aik Khor,et al.  Simulation of a composite cathode in solid oxide fuel cells , 2004 .

[100]  D. Leung,et al.  Parametric study of solid oxide fuel cell performance , 2007 .

[101]  刘庆国,et al.  High Temperature Solid Oxide Fuel Cells(SOFC) , 1993 .

[102]  Wim Turkenburg,et al.  A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies , 2006 .

[103]  Mogens Bjerg Mogensen,et al.  High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. , 2014, Chemical reviews.

[104]  G. Dietrich,et al.  Electrochemical high temperature technology for hydrogen production or direct electricity generation , 1988 .

[105]  E. Croiset,et al.  Modelling and Ni/Yttria-Stabilized-Zirconia pattern anode experimental validation of a new charge transfer reactions mechanism for hydrogen electrochemical oxidation on solid oxide fuel cell anodes , 2014 .

[106]  Stefano Cordiner,et al.  Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities , 2009 .

[107]  E. M. Logothetis,et al.  A first principles model of metal oxide gas sensors for measuring combustibles , 1998 .

[108]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[109]  Ludger Blum,et al.  Analysis of solid oxide fuel cell system concepts with anode recycling , 2013 .

[110]  Y. D. Kim,et al.  Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell , 2014 .

[111]  Dennis Y.C. Leung,et al.  Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes , 2007 .

[112]  W. Bessler,et al.  Density functional theory study of heterogeneous CO oxidation over an oxygen-enriched yttria-stabilized zirconia surface , 2012 .

[113]  R. Kee,et al.  Modeling Electrochemical Impedance Spectra in SOFC Button Cells with Internal Methane Reforming , 2006 .

[114]  Panagiotis Tsiakaras,et al.  High temperature electrolyzer based on solid oxide co-ionic electrolyte: A theoretical model , 2007 .

[115]  Wilson K. S. Chiu,et al.  Characterization and analysis methods for the examination of the heterogeneous solid oxide fuel cell electrode microstructure. Part 1: Volumetric measurements of the heterogeneous structure , 2010 .

[116]  George Tsatsaronis,et al.  Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power , 2008 .

[117]  Norberto Fueyo,et al.  Challenges in the electrochemical modelling of solid oxide fuel and electrolyser cells , 2014 .

[118]  J. Laurencin,et al.  Micro modelling of solid oxide electrolysis cell: From performance to durability , 2013 .

[119]  Yuanyuan Xie,et al.  Multi-scale electrochemical reaction anode model for solid oxide fuel cells , 2012 .

[120]  T. M. Bachmann,et al.  Life cycle assessment of H2 generation with high temperature electrolysis , 2013 .

[121]  Mosayeb Bornapour,et al.  Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network , 2012 .

[122]  E. Ivers-Tiffée,et al.  A Model-Based Interpretation of the Influence of Anode Surface Chemistry on Solid Oxide Fuel Cell Electrochemical Impedance Spectra , 2012 .

[123]  R. Hughes,et al.  The kinetics of methane steam reforming over a Ni/α-Al2O catalyst , 2001 .

[124]  Jonathan Deseure,et al.  Simulation of a high temperature electrolyzer , 2010 .

[125]  Jincan Chen,et al.  Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production , 2013 .

[126]  Jürgen Fleig,et al.  Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance , 2003 .

[127]  Dennis Y.C. Leung,et al.  An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production , 2006 .

[128]  Junxiang Shi,et al.  Inverse approach to quantify multi-physicochemical properties of porous electrodes for solid oxide fuel cells , 2011 .

[129]  Joshua L. Hertz,et al.  Measurement and finite element modeling of triple phase boundary-related current constriction in YSZ , 2007 .

[130]  Xingjian Xue,et al.  Modeling of Solid Oxide Electrolysis Cell for Syngas Generation with Detailed Surface Chemistry , 2012 .

[131]  T. Bligaard,et al.  Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions , 2009 .

[132]  Denver Cheddie,et al.  Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant , 2010 .

[133]  Reinerus Louwrentius Cornelissen,et al.  Thermodynamics and sustainable development; the use of exergy analysis and the reduction of irreversibility , 1997 .

[134]  A. Virkar,et al.  Failure of solid oxide fuel cells by electrochemically induced pressure , 2014 .

[135]  A. Brisse,et al.  A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells , 2013 .

[136]  Jarosław Milewski,et al.  Influences of The Type and Thickness of Electrolyte on Solid Oxide Fuel Cell Hybrid System Performance , 2006 .

[137]  R. Datta,et al.  Topological analysis of hydrogen oxidation reaction kinetics at Ni/YSZ anode of the solid oxide fuel cell , 2012 .

[138]  N. Brandon,et al.  Hydrogen production through steam electrolysis: Control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell , 2008 .

[139]  N Mehta Parth,et al.  Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering , 2013 .

[140]  Elisabetta Arato,et al.  Some more considerations on the optimization of cermet solid oxide fuel cell electrodes , 1998 .

[141]  T. Takagi,et al.  Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2H2O atmospheres , 1994 .

[142]  R. Ruka,et al.  A Solid Electrolyte Fuel Cell , 1962 .

[143]  Tom S. Clark,et al.  Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources , 2012 .

[144]  C. Hochenauer,et al.  Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels , 2012 .

[145]  R. Kee,et al.  A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies , 2003 .

[146]  W. Bessler,et al.  The Role of Interstitial Hydrogen Species in Ni/YSZ Patterned Anodes: A 2D Modeling Study , 2009 .

[147]  Chakib Bouallou,et al.  Model-based behaviour of a high temperature electrolyser system operated at various loads , 2013 .

[148]  B. Münch,et al.  The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells , 2013, Journal of Materials Science.

[149]  Yu Luo,et al.  Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells , 2013 .

[150]  G. V. D. Laan Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis , 1999 .

[151]  M. Shishkin,et al.  The Oxidation of H2 and CH4 on an Oxygen-Enriched Yttria-Stabilized Zirconia Surface: A Theoretical Study Based on Density Functional Theory , 2008 .

[152]  Shuqiang Wang,et al.  One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode , 2000 .

[153]  Qingxi Fu,et al.  Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment , 2010 .

[154]  Xiufu Sun,et al.  Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density , 2014 .

[155]  Vinod M. Janardhanan,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[156]  W. Bessler,et al.  Mathematical modeling of mass and charge transport and reaction in a solid oxide fuel cell with mixed ionic conduction , 2012 .

[157]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[158]  Computational fluid dynamics analysis of solid oxide electrolysis cells with delaminations , 2010 .

[159]  S. Kakaç,et al.  A review of numerical modeling of solid oxide fuel cells , 2007 .

[160]  Khiam Aik Khor,et al.  An electrolyte model for ceramic oxygen generator and solid oxide fuel cell , 2002 .

[161]  A. Virkar Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells , 2010 .

[162]  N. Brandon,et al.  A novel system for the production of pure hydrogen from natural gas based on solid oxide fuel cell–solid oxide electrolyzer , 2010 .

[163]  Dennis Y.C. Leung,et al.  Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production , 2007 .

[164]  Robert Gross,et al.  The costs and impacts of intermittency: An ongoing debate: "East is East, and West is West, and never the twain shall meet." , 2008 .

[165]  L. Chick,et al.  Surface Diffusion and Concentration Polarization on Oxide-Supported Metal Electrocatalyst Particles , 2003 .

[166]  T. Jacobsen,et al.  The Course of Oxygen Partial Pressure and Electric Potentials across an Oxide Electrolyte Cell , 2008 .

[167]  José Sánchez,et al.  Energy transport inside a three-phase electrode and application to a proton-conducting solid oxide electrolysis cell , 2013 .

[168]  S. Ebbesen,et al.  Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells , 2009 .

[169]  Dennis Y.C. Leung,et al.  A modeling study on concentration overpotentials of a reversible solid oxide fuel cell , 2006 .

[170]  Jarosław Milewski,et al.  A Mathematical Model of SOFC: A Proposal , 2012 .

[171]  Benjamin K. Sovacool,et al.  The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? , 2009 .

[172]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[173]  P. F. van den Oosterkamp,et al.  Review of an energy and exergy analysis of a fuel cell system , 1993 .

[174]  Marius Dillig,et al.  Thermal Management of High Temperature Solid Oxide Electrolyser Cell/Fuel Cell Systems , 2012 .

[175]  T. Hibino,et al.  Separator-free fuel cell stacks operating in a mixture of hydrogen and air , 2010 .

[176]  Siew Hwa Chan,et al.  Robust solid oxide cells for alternate power generation and carbon conversion , 2011 .

[177]  S. Jensen,et al.  Modeling degradation in SOEC impedance spectra , 2013 .

[178]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[179]  W. Bessler,et al.  A new framework for physically based modeling of solid oxide fuel cells , 2007 .