Theoretical study of lipid biosynthesis in wild‐type Escherichia coli and in a protoplast‐type L‐form using elementary flux mode analysis

In the present study, we investigated lipid biosynthesis in the bacterium Escherichia coli by mathematical modeling. In particular, we studied the interaction between the subsystems producing unsaturated and saturated fatty acids, phospholipids, lipid A, and cardiolipin. The present analysis was carried out both for the wild‐type and for several in silico knockout mutants, using the concept of elementary flux modes. Our results confirm that, in the wild type, there are four main products: L1‐phosphatidylethanolamine, lipid A, lipid A (cold‐adapted), and cardiolipin. We found that each of these compounds is produced on several different routes, indicating a high redundancy of the system under study. By analysis of the elementary flux modes remaining after the knockout of genes of lipid biosynthesis, and comparison with publicly available data on single‐gene knockouts in vivo, we were able to determine the metabolites essential for the survival of the cell. Furthermore, we analyzed a set of mutations that occur in a cell wall‐free mutant of Escherichia coli W1655F+. We postulate that the mutant is not capable of producing both forms of lipid A, when the combination of mutations is considered to make a nonfunctional pathway. This is in contrast to gene essentiality data showing that lipid A synthesis is indispensable for the survival of the cell. The loss of the outer membrane in the cell wall‐free mutant, however, shows that lipid A is dispensable as the main component of the outer surface structure in this particular E. coli strain.

[1]  Reinhard Wolf,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009 .

[2]  B. Tropp Cardiolipin synthase from Escherichia coli. , 1997, Biochimica et biophysica acta.

[3]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[4]  Xuefeng Lu,et al.  Overproduction of free fatty acids in E. coli: implications for biodiesel production. , 2008, Metabolic engineering.

[5]  Stefan Schuster,et al.  Systems biology Metatool 5.0: fast and flexible elementary modes analysis , 2006 .

[6]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[7]  U. Sauer,et al.  A Novel Metabolic Cycle Catalyzes Glucose Oxidation and Anaplerosis in Hungry Escherichia coli* , 2003, Journal of Biological Chemistry.

[8]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[9]  U. Taubeneck,et al.  Ultrastruktur der stabilen L‐Formen von Escherichia coli B und W 1655 F+ , 1971 .

[10]  A Kornberg,et al.  Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. , 1988, The Journal of biological chemistry.

[11]  R. Bone Gram-negative sepsis: a dilemma of modern medicine , 1993, Clinical Microbiology Reviews.

[12]  S. Schuster,et al.  Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. , 2009, Genome research.

[13]  R. Heath,et al.  Roles of the FabA and FabZ β-Hydroxyacyl-Acyl Carrier Protein Dehydratases in Escherichia coli Fatty Acid Biosynthesis* , 1996, The Journal of Biological Chemistry.

[14]  C. Raetz,et al.  Biosynthesis and function of phospholipids in Escherichia coli. , 1990, The Journal of biological chemistry.

[15]  G. Pluschke,et al.  Function of phospholipids in Escherichia coli. Characterization of a mutant deficient in cardiolipin synthesis. , 1978, The Journal of biological chemistry.

[16]  M. Orešič,et al.  Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations. , 2009, The journal of physical chemistry. B.

[17]  C. Raetz,et al.  Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. , 1999, The Journal of biological chemistry.

[18]  Matthias Platzer,et al.  The analysis of cell division and cell wall synthesis genes reveals mutationally inactivated ftsQ and mraY in a protoplast-type L-form of Escherichia coli. , 2006, FEMS microbiology letters.

[19]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Isaac Meilijson,et al.  Can single knockouts accurately single out gene functions? , 2008, BMC Systems Biology.

[21]  P. Armstrong,et al.  Histochemical Evidence for Lipid a (endotoxin) in Eukaryote Chloroplasts Materials and Methods , 2022 .

[22]  A. Williams,et al.  Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase , 2007, Proceedings of the National Academy of Sciences.

[23]  U. Taubeneck,et al.  [Stabil L-forms of several Escherichia coli strains]. , 1969, Zeitschrift fur allgemeine Mikrobiologie.

[24]  C. Raetz,et al.  The active site of Escherichia coli UDP-N-acetylglucosamine acyltransferase. Chemical modification and site-directed mutagenesis. , 1999, The Journal of biological chemistry.

[25]  Stefan Schuster,et al.  Adenine and adenosine salvage pathways in erythrocytes and the role of S‐adenosylhomocysteine hydrolase , 2005, The FEBS journal.

[26]  C. Raetz,et al.  An Escherichia coli Mutant Lacking the Cold Shock-induced Palmitoleoyltransferase of Lipid A Biosynthesis , 2002, The Journal of Biological Chemistry.

[27]  P. Freestone,et al.  Protein phosphorylation in Escherichia coli L. form NC-7. , 1998, Microbiology.

[28]  D. Guo,et al.  A second Escherichia coli protein with CL synthase activity. , 2000, Biochimica et biophysica acta.

[29]  C. Raetz,et al.  Biochemistry of endotoxins. , 1990, Annual review of biochemistry.

[30]  D. Fell,et al.  Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. , 1999, Trends in biotechnology.

[31]  C. Raetz,et al.  Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. , 1990, The Journal of biological chemistry.

[32]  C. Hoischen,et al.  Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form , 1997, Journal of bacteriology.

[33]  F. Srienc,et al.  Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism , 2009, Applied Microbiology and Biotechnology.

[34]  C. Rock,et al.  Regulation of fatty acid biosynthesis in Escherichia coli. , 1993, Microbiological reviews.

[35]  C. Georgopoulos,et al.  Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter , 1996, Molecular microbiology.

[36]  Christoph Wittmann,et al.  Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. , 2006, Metabolic engineering.

[37]  U. Taubeneck,et al.  Stabile L-Formen verschiedener Escherichia coli-Stämme , 1969 .

[38]  Matej Oresic,et al.  Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis , 2007, BMC Systems Biology.

[39]  T. M. Lewin,et al.  Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. , 1999, Biochemistry.

[40]  S. Ramirez,et al.  A Triple Mutant of Escherichia coli Lacking Secondary Acyl Chains on Lipid A* , 2002, The Journal of Biological Chemistry.

[41]  G. Dehò,et al.  Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG-yhbG locus. , 2006, Research in microbiology.

[42]  S. Schuster,et al.  Analysis of structural robustness of metabolic networks. , 2004, Systems biology.

[43]  Leen Stougie,et al.  Modes and cuts in metabolic networks: Complexity and algorithms , 2009, Biosyst..

[44]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[45]  Peer Bork,et al.  Use of pathway analysis and genome context methods for functional genomics of Mycoplasma pneumoniae nucleotide metabolism. , 2007, Gene.

[46]  A. D'arcy,et al.  Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[47]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[48]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[49]  R. Heath,et al.  A Conserved Histidine Is Essential for Glycerolipid Acyltransferase Catalysis , 1998, Journal of bacteriology.

[50]  C. Hoischen,et al.  Bacterial L-forms. , 2009, Advances in applied microbiology.

[51]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[52]  J. Schwender,et al.  Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds , 2004, Nature.

[53]  J. Gumpert,et al.  [Ultrastructure of stable L forms of Escherichia coli B and W 1655F]. , 1971, Zeitschrift fur allgemeine Mikrobiologie.

[54]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.