A Low-Power CT Incremental 3rd Order /spl Sigma//spl Delta/ ADC for Biosensor Applications
暂无分享,去创建一个
A. Rusu | S. Rodriguez | S. Rodriguez | A. Rusu | J. García | J. Garcia
[1] Zhiqing Zhang,et al. Noise–Power Optimization of Incremental Data Converters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.
[2] David A. Johns,et al. Incremental Data Converters at Low Oversampling Ratios , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.
[3] Yong Lian,et al. A 0.6-V 82-dB 28.6- W Continuous-Time , 2011 .
[4] Bang-Sup Song,et al. A Fifth-Order G$_{\rm m}$–C Continuous-Time $\Delta\Sigma$ Modulator With Process-Insensitive Input Linear Range , 2009, IEEE Journal of Solid-State Circuits.
[5] Gabor C. Temes,et al. Theory and applications of incremental ΔΣ converters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..
[6] János Márkus,et al. Higher-order incremental delta-sigma analog-to-digital converters , 2005 .
[7] Mohsen Mollazadeh,et al. Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials , 2009, IEEE Transactions on Biomedical Circuits and Systems.
[8] Shanthi Pavan,et al. Power Reduction in Continuous-Time Delta-Sigma Modulators Using the Assisted Opamp Technique , 2010, IEEE Journal of Solid-State Circuits.
[9] B. Razavi,et al. An 8-bit 150-MHz CMOS A/D converter , 1999, IEEE Journal of Solid-State Circuits.
[10] G.C. Temes,et al. A low-power 22-bit incremental ADC , 2006, IEEE Journal of Solid-State Circuits.
[11] Gustavo P. Sudre,et al. Decoding semantic information from human electrocorticographic (ECoG) signals , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
[12] Gabor C. Temes,et al. A 16-bit low-voltage CMOS A/D converter , 1987 .
[13] J. A. Wilson,et al. Two-dimensional movement control using electrocorticographic signals in humans , 2008, Journal of neural engineering.
[14] David A. Johns,et al. A frequency-scalable 15-bit incremental ADC for low power sensor applications , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
[15] Lars Sundström,et al. Design and Measurement of a CT � ADC With Switched-Capacitor Switched-Resistor Feedback , 2009 .
[16] R. Schreier,et al. Delta-sigma data converters : theory, design, and simulation , 1997 .
[17] Michael P. Flynn,et al. A 14 b 23 MS/s 48 mW Resetting $\Sigma \Delta$ ADC , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.
[18] Gert Cauwenberghs,et al. Micropower integrated bioamplifier and auto-ranging ADC for wireless and implantable medical instrumentation , 2010, 2010 Proceedings of ESSCIRC.
[19] Ana Rusu,et al. High-order continuous-time incremental ΣΔ ADC for multi-channel applications , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).
[20] Van Der Zwan. A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range , 1996 .
[21] Maurits Ortmanns,et al. A continuous-time /spl Sigma//spl Delta/ Modulator with reduced sensitivity to clock jitter through SCR feedback , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.
[22] Yannis Tsividis,et al. High Frequency Continuous Time Filters in Digital CMOS Processes , 2000 .
[23] Dong Wu,et al. An optimal filter with optional resolution used in incremental ADC for sensor application , 2011, 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet).
[24] Pieter Rombouts,et al. A 13.5-b 1.2-V micropower extended counting A/D converter , 2001, IEEE J. Solid State Circuits.
[25] E. Sanchez-Sinencio,et al. A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth , 2004, IEEE Journal of Solid-State Circuits.
[26] John B. Hughes,et al. Circuit architectures for high linearity monolithic continuous-time filtering , 1992 .
[27] James D. Plummer,et al. A High-Resolution Low-Power Incremental $\Sigma\Delta$ ADC With Extended Range for Biosensor Arrays , 2010, IEEE Journal of Solid-State Circuits.
[28] Gabor C. Temes,et al. 82 dB SNDR 20-channel incremental ADC with optimal decimation filter and digital correction , 2010, IEEE Custom Integrated Circuits Conference 2010.
[29] Andrew B. Schwartz,et al. Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics , 2006, Neuron.
[30] J. Silva-Martinez,et al. Design techniques for high-performance full-CMOS OTA-RC continuous-time filters , 1992, IEEE Journal of Solid-State Circuits.
[31] F. Harris. On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.
[32] Gerwin Schalk,et al. A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.
[33] Joachim Haase,et al. A low-power continuous-time incremental 2nd-order-MASH ΣΔ-modulator for a CMOS imager , 2009, 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009).
[34] Maurits Ortmanns,et al. Continuous time sigma-delta A/D conversion : fundamentals, performance limits and robust implementations , 2006 .