A Low-Power CT Incremental 3rd Order /spl Sigma//spl Delta/ ADC for Biosensor Applications

This paper proposes a 3rd order single-loop continuous-time incremental sigma-delta analogue-to-digital converter (ADC) for time-multiplexed signals. Incremental sigma-delta modulation is used to address medium to high resolution requirements of multi-channel applications, while a 3rd order continuous-time implementation is investigated as an alternative for low-power solutions. A prototype of the proposed modulator, running at 320 kHz, has been fabricated in a 0.15-μm CMOS technology, while the synchronization circuitry to allow incremental operation was built on-board. Measurement results show that the ADC achieves 65.3 dB peak SNR, 64 dB peak SNDR and 68.2 dB dynamic range over a 2 kHz bandwidth. The modulator's power dissipation is 96 μW from a 1.6 V power supply. This translates into the best figure-of-merit when compared to recently published continuous-time alternatives, while being competitive with respect to state-of-the-art discrete-time counterparts.

[1]  Zhiqing Zhang,et al.  Noise–Power Optimization of Incremental Data Converters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  David A. Johns,et al.  Incremental Data Converters at Low Oversampling Ratios , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Yong Lian,et al.  A 0.6-V 82-dB 28.6- W Continuous-Time , 2011 .

[4]  Bang-Sup Song,et al.  A Fifth-Order G$_{\rm m}$–C Continuous-Time $\Delta\Sigma$ Modulator With Process-Insensitive Input Linear Range , 2009, IEEE Journal of Solid-State Circuits.

[5]  Gabor C. Temes,et al.  Theory and applications of incremental ΔΣ converters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[6]  János Márkus,et al.  Higher-order incremental delta-sigma analog-to-digital converters , 2005 .

[7]  Mohsen Mollazadeh,et al.  Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[8]  Shanthi Pavan,et al.  Power Reduction in Continuous-Time Delta-Sigma Modulators Using the Assisted Opamp Technique , 2010, IEEE Journal of Solid-State Circuits.

[9]  B. Razavi,et al.  An 8-bit 150-MHz CMOS A/D converter , 1999, IEEE Journal of Solid-State Circuits.

[10]  G.C. Temes,et al.  A low-power 22-bit incremental ADC , 2006, IEEE Journal of Solid-State Circuits.

[11]  Gustavo P. Sudre,et al.  Decoding semantic information from human electrocorticographic (ECoG) signals , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[12]  Gabor C. Temes,et al.  A 16-bit low-voltage CMOS A/D converter , 1987 .

[13]  J. A. Wilson,et al.  Two-dimensional movement control using electrocorticographic signals in humans , 2008, Journal of neural engineering.

[14]  David A. Johns,et al.  A frequency-scalable 15-bit incremental ADC for low power sensor applications , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[15]  Lars Sundström,et al.  Design and Measurement of a CT � ADC With Switched-Capacitor Switched-Resistor Feedback , 2009 .

[16]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[17]  Michael P. Flynn,et al.  A 14 b 23 MS/s 48 mW Resetting $\Sigma \Delta$ ADC , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Gert Cauwenberghs,et al.  Micropower integrated bioamplifier and auto-ranging ADC for wireless and implantable medical instrumentation , 2010, 2010 Proceedings of ESSCIRC.

[19]  Ana Rusu,et al.  High-order continuous-time incremental ΣΔ ADC for multi-channel applications , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[20]  Van Der Zwan A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range , 1996 .

[21]  Maurits Ortmanns,et al.  A continuous-time /spl Sigma//spl Delta/ Modulator with reduced sensitivity to clock jitter through SCR feedback , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Yannis Tsividis,et al.  High Frequency Continuous Time Filters in Digital CMOS Processes , 2000 .

[23]  Dong Wu,et al.  An optimal filter with optional resolution used in incremental ADC for sensor application , 2011, 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet).

[24]  Pieter Rombouts,et al.  A 13.5-b 1.2-V micropower extended counting A/D converter , 2001, IEEE J. Solid State Circuits.

[25]  E. Sanchez-Sinencio,et al.  A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth , 2004, IEEE Journal of Solid-State Circuits.

[26]  John B. Hughes,et al.  Circuit architectures for high linearity monolithic continuous-time filtering , 1992 .

[27]  James D. Plummer,et al.  A High-Resolution Low-Power Incremental $\Sigma\Delta$ ADC With Extended Range for Biosensor Arrays , 2010, IEEE Journal of Solid-State Circuits.

[28]  Gabor C. Temes,et al.  82 dB SNDR 20-channel incremental ADC with optimal decimation filter and digital correction , 2010, IEEE Custom Integrated Circuits Conference 2010.

[29]  Andrew B. Schwartz,et al.  Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics , 2006, Neuron.

[30]  J. Silva-Martinez,et al.  Design techniques for high-performance full-CMOS OTA-RC continuous-time filters , 1992, IEEE Journal of Solid-State Circuits.

[31]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[32]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[33]  Joachim Haase,et al.  A low-power continuous-time incremental 2nd-order-MASH ΣΔ-modulator for a CMOS imager , 2009, 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009).

[34]  Maurits Ortmanns,et al.  Continuous time sigma-delta A/D conversion : fundamentals, performance limits and robust implementations , 2006 .