Enhancing the Efficiency of Multicrystalline Silicon Solar Cells by the Inkjet Printing of Silicon-Quantum-Dot Ink

Among all types of solar cells, multicrystalline silicon (Si) solar cells are the most widely produced. The enhancement of the efficiency of multicrystalline Si solar cells may help broaden the deployment of solar cells worldwide. Here we show that the efficiency of state-of-the-art commercially produced multicrystalline Si solar cells can be enhanced by a simple inkjet printing of Si-quantum-dot (Si-QD) ink at the solar cell surface. It is found that the efficiency enhancement results from both the down-shifting of Si QDs and the antireflection of porous Si-QD films at the solar cell surface. The current results demonstrate that Si-based nanotechnology can facilitate the continuous development of traditional Si solar cells.

[1]  Dinesh Kumar,et al.  Efficiency enhancement of silicon solar cells with silicon nanocrystals embedded in PECVD silicon nitride matrix , 2012 .

[2]  P. Yu,et al.  Highly efficient CdS-quantum-dot-sensitized GaAs solar cells. , 2012, Optics express.

[3]  Xiaodong Pi,et al.  Spin-coating silicon-quantum-dot ink to improve solar cell efficiency , 2011 .

[4]  Lorenzo Pavesi,et al.  Silicon nanocrystals as a photoluminescence down shifter for solar cells , 2011 .

[5]  J. Kelly,et al.  An investigation into near-UV hydrosilylation of freestanding silicon nanocrystals. , 2010, ACS nano.

[6]  U. Kortshagen,et al.  Silicon and Germanium Nanocrystal Inks for Low-Cost Solar Cells , 2010 .

[7]  Gavin Conibeer,et al.  Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications , 2009 .

[8]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[9]  U. Kortshagen Nonthermal plasma synthesis of semiconductor nanocrystals , 2009 .

[10]  Mark T. Swihart,et al.  Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum , 2009 .

[11]  C. B. Carter,et al.  Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach , 2008, Nanotechnology.

[12]  Uwe R. Kortshagen,et al.  Plasma‐Assisted Synthesis of Silicon Nanocrystal Inks , 2007 .

[13]  M. Alsalhi,et al.  Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle , 2007 .

[14]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[15]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[16]  W. V. Sark,et al.  Enhancing solar cell efficiency by using spectral converters , 2005 .

[17]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[18]  J. C. Muller,et al.  Silicon nanocrystals as light converter for solar cells , 2004 .

[19]  Peter H. Stauffer,et al.  Rare earth elements: critical resources for high technology , 2002 .

[20]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[21]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.