Computation of a 768-Bit Prime Field Discrete Logarithm
暂无分享,去创建一个
Arjen K. Lenstra | Thorsten Kleinjung | Colin Stahlke | Christine Priplata | Claus Diem | C. Diem | T. Kleinjung | C. Priplata | C. Stahlke | A. Lenstra
[1] Arjen K. Lenstra,et al. Ron was wrong, Whit is right , 2012, IACR Cryptol. ePrint Arch..
[2] Antoine Joux,et al. Improving the Polynomial time Precomputation of Frobenius Representation Discrete Logarithm Algorithms - Simplified Setting for Small Characteristic Finite Fields , 2014, IACR Cryptol. ePrint Arch..
[3] Arjen K. Lenstra,et al. Factoring by Electronic Mail , 1990, EUROCRYPT.
[4] M. Don Zagier. Théorie des nombres , 2008 .
[5] Carl Pomerance,et al. A Tale of Two Sieves , 1998 .
[6] Arjen K. Lenstra,et al. On the Security of 1024-bit RSA and 160-bit Elliptic Curve Cryptography , 2009, IACR Cryptol. ePrint Arch..
[7] Taher ElGamal,et al. A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .
[8] Arjen K. Lenstra,et al. A random zoo: sloth, unicorn, and trx , 2015, IACR Cryptol. ePrint Arch..
[9] A. K. Lenstra,et al. The Development of the Number Field Sieve , 1993 .
[10] Arjen K. Lenstra,et al. Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.
[11] A. K. Lenstra,et al. Addendum: “The factorization of the ninth Fermat number” [Math. Comp. 61 (1993), no. 203, 319–349; MR1182953 (93k:11116)] , 1995 .
[12] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[13] H. Lenstra,et al. Factoring integers with the number field sieve , 1993 .
[14] Joan E. Adamo,et al. 2409 , 2017, Journal of Clinical and Translational Science.
[15] E. Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems , 1995 .
[16] Don Coppersmith. Modifications to the Number Field Sieve , 2004, Journal of Cryptology.
[17] Matthew Green,et al. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice , 2015, CCS.
[18] Arjen K. Lenstra,et al. Unbelievable Security. Matching AES Security Using Public Key Systems , 2001, ASIACRYPT.
[19] A. K. Lenstra,et al. The factorization of the ninth Fermat number , 1993 .
[20] Leonard M. Adleman,et al. A subexponential algorithm for the discrete logarithm problem with applications to cryptography , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[21] Arjen K. Lenstra,et al. Mersenne Factorization Factory , 2014, ASIACRYPT.
[22] T. Wirth,et al. Proving the Primality of Very Large Numbers with fastECPP , 2004, ANTS.
[23] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[24] Antoine Joux,et al. Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method , 2003, Math. Comput..
[25] Arjen K. Lenstra,et al. A heterogeneous computing environment to solve the 768-bit RSA challenge , 2010, Cluster Computing.
[26] Arjen K. Lenstra,et al. Selecting Cryptographic Key Sizes , 2000, Public Key Cryptography.
[27] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[28] Daniel M. Gordon,et al. Discrete Logarithms in GF(P) Using the Number Field Sieve , 1993, SIAM J. Discret. Math..
[29] Oliver Schirokauer. Virtual logarithms , 2005, J. Algorithms.
[30] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.