Matching with shape contexts

We introduce a new shape descriptor, the shape context, for measuring shape similarity and recovering point correspondences. The shape context describes the coarse arrangement of the shape with respect to a point inside or on the boundary of the shape. We use the shape context as a vector-valued attribute in a bipartite graph matching framework. Our proposed method makes use of a relatively small number of sample points selected from the set of detected edges; no special landmarks or keypoints are necessary. Tolerance and/or invariance to common image transformations are available within our framework. Using examples involving both silhouettes and edge images, we demonstrate how the solution to the graph matching problem provides us with correspondences and a dissimilarity score that can be used for object recognition and similarity-based retrieval.

[1]  Jitendra Malik,et al.  Shape contexts enable efficient retrieval of similar shapes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  Jitendra Malik,et al.  Geometric blur for template matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[4]  Serge J. Belongie,et al.  Matching shapes , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[6]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Ulrich Eckhardt,et al.  Shape descriptors for non-rigid shapes with a single closed contour , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  Jitendra Malik,et al.  Shape Context: A New Descriptor for Shape Matching and Object Recognition , 2000, NIPS.

[9]  Daphna Weinshall,et al.  Flexible Syntactic Matching of Curves and Its Application to Automatic Hierarchical Classification of Silhouettes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Jitendra Malik,et al.  Textons, contours and regions: cue integration in image segmentation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Clark F. Olson,et al.  View-Based Recognition Using an Eigenspace Approximation to the Hausdorff Measure , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Alex Pentland,et al.  Probabilistic object recognition and localization , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  B. Kimia,et al.  Symmetry-based indexing of image databases , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[15]  Jitendra Malik,et al.  Color- and texture-based image segmentation using EM and its application to content-based image retrieval , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[16]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[17]  Yali Amit,et al.  Joint Induction of Shape Features and Tree Classifiers , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[19]  Andrew E. Johnson,et al.  Recognizing objects by matching oriented points , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  B. Ripley Pattern Recognition and Neural Networks , 1996 .

[23]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[24]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[25]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[27]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[28]  Daniel P. Huttenlocher,et al.  A multi-resolution technique for comparing images using the Hausdorff distance , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[30]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..

[31]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[32]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[33]  Jitendra Malik,et al.  A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters , 1991, ECCV.

[34]  Rakesh Mohan,et al.  Multidimensional indexing for recognizing visual shapes , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  A. Yuille Deformable Templates for Face Recognition , 1991, Journal of Cognitive Neuroscience.

[37]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[38]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[39]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[40]  G. Wahba Spline Models for Observational Data , 1990 .

[41]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  L Sirovich,et al.  Low-dimensional Procedure for the Characterization of Human Faces , 1986 .

[44]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[46]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.

[47]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[48]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[49]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[50]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[51]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[52]  P. Bickel A Distribution Free Version of the Smirnov Two Sample Test in the $p$-Variate Case , 1969 .

[53]  D'arcy W. Thompson On Growth and Form , 1917, Nature.