Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells

[1]  K. Shokat,et al.  A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. , 2008, The Biochemical journal.

[2]  Zhi Hu,et al.  An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. , 2008, Cancer research.

[3]  M. Loda,et al.  Essential roles of PI(3)K–p110β in cell growth, metabolism and tumorigenesis , 2008, Nature.

[4]  Ian O Ellis,et al.  Basal-like breast cancer: a critical review. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  John W M Martens,et al.  Subtypes of breast cancer show preferential site of relapse. , 2008, Cancer research.

[6]  S. H. Lee,et al.  Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias , 2008, British Journal of Cancer.

[7]  Emmanuel Barillot,et al.  ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays , 2008, Bioinform..

[8]  O. Fadare,et al.  Clinical and pathologic aspects of basal-like breast cancers , 2008, Nature Clinical Practice Oncology.

[9]  A. Tutt,et al.  Triple negative tumours: a critical review , 2007, Histopathology.

[10]  C. Sotiriou,et al.  Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures , 2007, Breast Cancer Research.

[11]  L. Saal,et al.  Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair , 2008, Nature Genetics.

[12]  Sampsa Hautaniemi,et al.  Deciphering downstream gene targets of PI3K/mTOR/p70S6K pathway in breast cancer , 2008, BMC Genomics.

[13]  Daniel Birnbaum,et al.  Integrated profiling of basal and luminal breast cancers. , 2007, Cancer research.

[14]  Sei Yoshida,et al.  Increased phosphorylation of Akt in triple‐negative breast cancers , 2007, Cancer science.

[15]  Harry Bartelink,et al.  Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas , 2007, Breast Cancer Research.

[16]  Spyro Mousses,et al.  A transforming mutation in the pleckstrin homology domain of AKT1 in cancer , 2007, Nature.

[17]  M. Zvelebil,et al.  Exploring the specificity of the PI3K family inhibitor LY294002. , 2007, The Biochemical journal.

[18]  K. Watabe,et al.  Roles of AKT signal in breast cancer. , 2007, Frontiers in bioscience : a journal and virtual library.

[19]  M. Ringnér,et al.  Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity , 2007, Proceedings of the National Academy of Sciences.

[20]  L. Helman,et al.  Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism , 2007, Oncogene.

[21]  J. Reis-Filho,et al.  Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer , 2007, Modern Pathology.

[22]  Wolfgang Heller,et al.  Triple-negative breast cancer: therapeutic options. , 2007, The Lancet. Oncology.

[23]  W. Muller,et al.  The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer , 2007, Oncogene.

[24]  J. Couzin Probing the Roots of Race and Cancer , 2007, Science.

[25]  C. Perou,et al.  Identification of a basal-like subtype of breast ductal carcinoma in situ. , 2007, Human pathology.

[26]  Anthony Rhodes,et al.  American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. , 2006, Archives of pathology & laboratory medicine.

[27]  J. Couzin Cancer research. Probing the roots of race and cancer. , 2007, Science.

[28]  A. Vincent-Salomon,et al.  Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity , 2007, Breast Cancer Research.

[29]  E. Tokunaga,et al.  Coexistence of the loss of heterozygosity at the PTEN locus and HER2 overexpression enhances the Akt activity thus leading to a negative progesterone receptor expression in breast carcinoma , 2007, Breast Cancer Research and Treatment.

[30]  Ajay N. Jain,et al.  Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. , 2006, Cancer cell.

[31]  T. Nielsen,et al.  Deconstructing the molecular portrait of basal-like breast cancer. , 2006, Trends in molecular medicine.

[32]  Céline Rouveirol,et al.  VAMP: Visualization and analysis of array-CGH, transcriptome and other molecular profiles , 2006, Bioinform..

[33]  E. Tokunaga,et al.  Activation of PI3K/Akt signaling and hormone resistance in breast cancer , 2006, Breast cancer.

[34]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[35]  L. Cantley,et al.  Ras, PI(3)K and mTOR signalling controls tumour cell growth , 2006, Nature.

[36]  A. Nobel,et al.  The molecular portraits of breast tumors are conserved across microarray platforms , 2006, BMC Genomics.

[37]  C. Gulmann,et al.  Array‐based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer , 2006, The Journal of pathology.

[38]  E. L. Scolan,et al.  Phosphatidylinositol 4-phosphatase type II is an erythropoietin-responsive gene , 2006, Oncogene.

[39]  Shridar Ganesan,et al.  X chromosomal abnormalities in basal-like human breast cancer. , 2006, Cancer cell.

[40]  C. Perou,et al.  Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma , 2006, Modern Pathology.

[41]  Gordon B Mills,et al.  mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. , 2006, Cancer research.

[42]  A. Vincent-Salomon,et al.  KIT is highly expressed in adenoid cystic carcinoma of the breast, a basal-like carcinoma associated with a favorable outcome , 2005, Modern Pathology.

[43]  Yiling Lu,et al.  Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery , 2005, Nature Reviews Drug Discovery.

[44]  M. Dowsett,et al.  Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. , 2005, The New England journal of medicine.

[45]  Roman Rouzier,et al.  Breast Cancer Molecular Subtypes Respond Differently to Preoperative Chemotherapy , 2005, Clinical Cancer Research.

[46]  Hanina Hibshoosh,et al.  PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. , 2005, Cancer research.

[47]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[48]  Emmanuel Barillot,et al.  Analysis of array CGH data: from signal ratio to gain and loss of DNA regions , 2004, Bioinform..

[49]  Paul J Utz,et al.  Protein microarrays for multiplex analysis of signal transduction pathways , 2004, Nature Medicine.

[50]  G. Mills,et al.  Targeting Mammalian Target of Rapamycin Synergistically Enhances Chemotherapy-Induced Cytotoxicity in Breast Cancer Cells , 2004, Clinical Cancer Research.

[51]  Terry L. Smith,et al.  Activation of the Akt/Mammalian Target of Rapamycin/4E-BP1 Pathway by ErbB2 Overexpression Predicts Tumor Progression in Breast Cancers , 2004, Clinical Cancer Research.

[52]  W. Friedrichs,et al.  Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. , 2004, Annals of oncology : official journal of the European Society for Medical Oncology.

[53]  A. Gown,et al.  Immunohistochemical and Clinical Characterization of the Basal-Like Subtype of Invasive Breast Carcinoma , 2004, Clinical Cancer Research.

[54]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[55]  G. Mills,et al.  Determinants of Rapamycin Sensitivity in Breast Cancer Cells , 2004, Clinical Cancer Research.

[56]  Philip M. Long,et al.  Breast cancer classification and prognosis based on gene expression profiles from a population-based study , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Tibshirani,et al.  Repeated observation of breast tumor subtypes in independent gene expression data sets , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. West,et al.  Gene expression predictors of breast cancer outcomes , 2003, The Lancet.

[59]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[60]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P. Depowski,et al.  Loss of Expression of the PTEN Gene Protein Product Is Associated with Poor Outcome in Breast Cancer , 2001, Modern Pathology.

[62]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.