Coexistence and phase separation in clusters: From the small to the not‐so‐small regime

We generalize the necessary and sufficient conditions for finite systems to exhibit van der Waals‐type loops (or ‘‘S‐bends’’) in thermodynamic functions. In the infinite limit, such features are forbidden by Van Hove’s theorem, and phase separation occurs instead. However, in small systems the energetic cost of the interface associated with phase separation is too great, and there is no contribution to the partition function from regions of phase space corresponding to two phases coexisting in contact. We derive a simple model that can correctly describe both limits, and investigate how the onset of phase separation will affect observable thermodynamic properties.

[1]  Berry,et al.  Freezing, melting, spinodals, and clusters. , 1989, Physical review letters.

[2]  Surface effects in vibrational and melting properties of Pb clusters , 1993 .

[3]  Andreoni,et al.  Melting of small gold particles: Mechanism and size effects. , 1991, Physical review letters.

[4]  T. L. Hill On First‐Order Phase Transitions in Canonical and Grand Ensembles , 1955 .

[5]  L. Bartell Nucleation Rates in Freezing and Solid-State Transitions. Molecular Clusters as Model Systems , 1995 .

[6]  Cheng,et al.  Surface melting of clusters and implications for bulk matter. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[8]  I. R. Mcdonald,et al.  Calculation of thermodynamic properties of liquid argon from Lennard-Jones parameters by a Monte Carlo method , 1967 .

[9]  Yoseph Imry,et al.  Finite-size rounding of a first-order phase transition , 1980 .

[10]  J. Jortner,et al.  Energetic and thermodynamic size effects in molecular clusters , 1989 .

[11]  D. Wales,et al.  Packing schemes for Lennard-Jones clusters of 13 to 150 atoms: minima, transition states and rearrangement mechanisms , 1991 .

[12]  Thomas A. Weber,et al.  Dynamics of structural transitions in liquids , 1983 .

[13]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[14]  L. Hove Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction , 1949 .

[15]  C. J. Tsai,et al.  Use of the histogram and jump‐walking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations: Applications to the phase transitions in the (Ar)13 and (H2O)8 clusters , 1993 .

[16]  Stephen W. Hawking,et al.  Black Holes and Thermodynamics , 1976 .

[17]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[18]  David J. Wales,et al.  Free energy barriers to melting in atomic clusters , 1994 .

[19]  Thomas L. Beck,et al.  The interplay of structure and dynamics in the melting of small clusters , 1988 .

[20]  David Jackson McGinty,et al.  Vapor phase homogeneous nucleation and the thermodynamic properties of small clusters of argon atoms , 1971 .

[21]  K. Re,et al.  Coexistence of multiple phases in finite systems. , 1993 .

[22]  Complete statistical thermodynamics of the cluster solid-liquid transition. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[23]  Frank H. Stillinger,et al.  Thermodynamics of Small Systems, Part I. , 1964 .

[24]  David J. Wales,et al.  Coexistence in small inert gas clusters , 1993 .

[25]  Frank H. Stillinger,et al.  Computational study of transition dynamics in 55-atom clusters , 1990 .

[26]  D. Lynden-Bell,et al.  On the negative specific heat paradox , 1977 .

[27]  S. Katsura On the Phase Transition , 1954 .

[28]  Clyde L. Briant,et al.  Molecular dynamics study of the structure and thermodynamic properties of argon microclusters , 1975 .

[29]  David J. Wales,et al.  Melting and freezing of small argon clusters , 1990 .

[30]  K. Gubbins,et al.  A molecular dynamics study of liquid drops , 1984 .

[31]  T. L. Hill Adsorption on Proteins, the Grand Partition Function and First-Order Phase Changes, According to Approximate Statistical Mechanical Theories , 1953 .

[32]  Berry,et al.  Multiple phase coexistence in finite systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  R. Berry,et al.  Melting and surface tension in microclusters , 1983 .

[34]  Eberhard R. Hilf,et al.  The structure of small clusters: Multiple normal-modes model , 1993 .

[35]  S. Weerasinghe,et al.  Absolute classical densities of states for very anharmonic systems and applications to the evaporation of rare gas clusters , 1993 .

[36]  A. Nihat Berker,et al.  Scaling for first-order phase transitions in thermodynamic and finite systems , 1982 .

[37]  A. Pertsin,et al.  A Monte Carlo study of the structure and thermodynamic behaviour of small Lennard-Jones clusters , 1980 .

[38]  Alfred Hüller Finite size scaling at first order phase transitions? , 1994 .

[39]  J. Rose,et al.  Freezing, melting, nonwetting, and coexistence in (KCl)32 , 1993 .

[40]  Robert L. Whetten,et al.  Capillarity theory for the coexistence of liquid and solid clusters , 1988 .

[41]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[42]  Berry,et al.  Coexistence in finite systems. , 1994, Physical review letters.

[43]  M. Williams,et al.  A curious result concerning the Clausius virial , 1985 .