Cartesian Control of Robotic Manipulators with Joint Compliance

An efficient on-line scheme for computing the inverse joint solution of robotic manipulators is combined with an improved formulation of robust, nonlinear feedback control in joint space to produce a realizable Cartesian control scheme. Parametric uncertainties in the robot model are highlighted by the inclusion of compliance at each joint. Simulation results for a two link, coupled manipulator demonstrate that this Cartesian control enables the tip of the arm to track the demanded trajectory with arbitrarily small error in response to realistic actuator torques.

[1]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[2]  L. Sweet,et al.  Redefinition of the robot motion-control problem , 1985, IEEE Control Systems Magazine.

[3]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[4]  William M. Silver On the Equivalence of Lagrangian and Newton-Euler Dynamics for Manipulators , 1982 .

[5]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Harpreet Singh,et al.  End point position control of a single link, two-degree-of-freedom manipulator with joint compliance and actuator dynamics , 1985 .

[7]  Andreas Jacubasch,et al.  Control algorithms for stiffening an elastic industrial robot , 1985, IEEE J. Robotics Autom..

[8]  Pradeep K. Khosla,et al.  Computational requirements of customized Newton-Euler algorithms , 1985, J. Field Robotics.

[9]  S. Nicosia,et al.  On the Control of Robots with Elastic Joints , 1985 .

[10]  C. Atkeson,et al.  Estimation of inertial parameters of rigid body links of manipulators , 1985, 1985 24th IEEE Conference on Decision and Control.

[11]  Charles P. Neuman,et al.  The inertial characteristics of dynamic robot models , 1985 .

[12]  Eugene I. Rivin Analysis of Structural Compliance for Robot Manipulators , 1984 .

[13]  W. Wolovich,et al.  A computational technique for inverse kinematics , 1984, The 23rd IEEE Conference on Decision and Control.

[14]  Charles P. Neuman,et al.  Robust nonlinear feedback control for robotic manipulators , 1985 .

[15]  Charles P. Neuman,et al.  Discrete dynamic robot models , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Charles P. Neuman,et al.  Inverse dynamics applications of discrete robot models , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Charles P. Neuman,et al.  Properties and structure of dynamic robot models for control engineering applications , 1985 .