Subspace identification for data‐driven modeling and quality control of batch processes

In this Chapter, a novel data-driven, quality modeling and control approach for batch processes is presented. Specifically, subspace identification methods are adapted for use with batch data to identify a state-space model from available process measurements and input moves. The resulting LTI, dynamic, state-space model is shown to be able to describe the transient behavior of finite duration batch processes. Next, the terminal quality is related to the terminal value of the identified states. Finally, the resulting model is applied in a shrinking-horizon, model predictive control scheme to directly control terminal product quality. The theoretical properties of the proposed approach are studied and compared to state-of-the-art latent variable control approaches. The efficacy of the proposed approach is demonstrated through a simulation study of a batch polymethyl methacrylate (PMMA) polymerization reactor. Results for both disturbance rejection and set-point changes (that is, new quality grades) are demonstrated.

[1]  John F. MacGregor,et al.  Iterative Learning Control for Final Batch Product Quality Using Partial Least Squares Models , 2005 .

[2]  Prashant Mhaskar,et al.  Data-Based Modeling and Control of Nylon-6, 6 Batch Polymerization , 2013, IEEE Transactions on Control Systems Technology.

[3]  Dominique Bonvin Control and optimization of batch processes , 2006 .

[4]  Dominique Bonvin,et al.  Optimal operation of batch reactors—a personal view , 1998 .

[5]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[6]  Furong Gao,et al.  Subspace identification for two-dimensional dynamic batch process statistical monitoring , 2008 .

[7]  John F. MacGregor,et al.  Latent variable MPC for trajectory tracking in batch processes , 2005 .

[8]  Panagiotis D. Christofides,et al.  Predictive control of particle size distribution in particulate processes , 2006 .

[9]  Babu Joseph,et al.  Predictive control of quality in batch polymerization using hybrid ANN models , 1996 .

[10]  Prashant Mhaskar,et al.  Model predictive quality control of Polymethyl methacrylate , 2013, 2013 American Control Conference.

[11]  Tohru Katayama Subspace identification of closed-loop systems , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[12]  John F. MacGregor,et al.  Modeling of dynamic systems using latent variable and subspace methods , 2000 .

[13]  Prashant Mhaskar,et al.  Latent variable model predictive control for trajectory tracking in batch processes: Alternative modeling approaches , 2011 .

[14]  Jaleel Valappil,et al.  Accounting for batch reactor uncertainty in the nonlinear MPC of end-use properties , 2003 .

[15]  Jay H. Lee,et al.  ITERATIVE LEARNING CONTROL APPLIED TO BATCH PROCESSES: AN OVERVIEW , 2006 .

[16]  Michel Verhaegen,et al.  Closed-loop subspace identification methods: an overview , 2013 .

[17]  Prashant Mhaskar,et al.  Latent Variable Model Predictive Control (LV-MPC) for trajectory tracking in batch processes , 2010 .

[18]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[19]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[20]  Prashant Mhaskar,et al.  Robust model predictive control and fault handling of batch processes , 2011 .

[21]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[22]  Honglu Yu,et al.  Latent Variable Model Predictive Control for Trajectory Tracking in Batch Processes: Internal Model Control Interpretation and Design Methodology , 2013 .

[23]  J. Macgregor,et al.  Control of Particle Size Distributions in Emulsion Semibatch Polymerization Using Mid-Course Correction Policies , 2002 .

[24]  Alberto Ferrer,et al.  Self-tuning run to run optimization of fed-batch processes using unfold-PLS , 2007 .

[25]  B. Bequette Nonlinear control of chemical processes: a review , 1991 .

[26]  Mohd Azlan Hussain,et al.  Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation , 2011 .

[27]  C. E. Schlags,et al.  Multivariate statistical analysis of an emulsion batch process , 1998 .

[28]  J. Macgregor,et al.  Experiences with industrial applications of projection methods for multivariate statistical process control , 1996 .

[29]  P. A. Taylor,et al.  Synchronization of batch trajectories using dynamic time warping , 1998 .

[30]  Esat Alpay,et al.  Polymerisation of methyl methacrylate in a pilot-scale tubular reactor: modelling and experimental studies , 2003 .

[31]  John F. MacGregor,et al.  Optimization of molecular-weight distribution using batch-to-batch adjustments , 1998 .

[32]  P. A. Taylor,et al.  Missing data methods in PCA and PLS: Score calculations with incomplete observations , 1996 .

[33]  Jay H. Lee,et al.  Model predictive control technique combined with iterative learning for batch processes , 1999 .

[34]  Jay H. Lee,et al.  Building inferential prediction models of batch processes using subspace identification , 2003 .

[35]  Jay H. Lee,et al.  A Technique for Integrated Quality Control, Profile Control, and Constraint Handling for Batch Processes , 2000 .

[36]  Barry Lennox,et al.  Disturbance Rejection for the Control of Batch End-product Quality using Latent Variable Models , 2012 .

[37]  A. Ferrer,et al.  Dealing with missing data in MSPC: several methods, different interpretations, some examples , 2002 .

[38]  Jonas Sjöberg,et al.  Trajectory tracking in batch processes using neural controllers , 2002 .

[39]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[40]  Theodora Kourti,et al.  Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS , 1995 .

[41]  Panagiotis D. Christofides,et al.  Crystal shape modeling and control in protein crystal growth , 2013 .

[42]  Iqbal M. Mujtaba,et al.  Evaluation of neural networks-based controllers in batch polymerisation of methyl methacrylate , 2008, Neurocomputing.

[43]  R. Berber Control of batch reactors : a review : Process operations and control , 1996 .

[44]  Hyun-Ku Rhee,et al.  Application of adaptive model-predictive control to a batch MMA polymerization reactor , 1998 .

[45]  Michel Verhaegen,et al.  Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..

[46]  Prashant Mhaskar,et al.  Latent Variable MPC for trajectory tracking in batch processes: Role of the model structure , 2009, 2009 American Control Conference.

[47]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[48]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[49]  Panagiotis D. Christofides,et al.  Run-to-Run-Based Model Predictive Control of Protein Crystal Shape in Batch Crystallization , 2015 .

[50]  John F. MacGregor,et al.  Feedback control of polymer quality in semi-batch copolymerization reactors , 1992 .

[51]  Dominique Bonvin,et al.  On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes , 2013, Comput. Chem. Eng..

[52]  Anh Tran,et al.  Modeling and Control of Ibuprofen Crystal Growth and Size Distribution , 2015 .

[53]  J. Macgregor,et al.  Control of batch product quality by trajectory manipulation using latent variable models , 2004 .