Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films

A contact has been developed to achieve a low specific contact resistance to p-type GaN. The contact consisted of a bi-layer Ni/Au film deposited on p-type GaN followed by heat treatment in air to transform the metallic Ni into NiO along with an amorphous Ni–Ga–O phase and large Au grains. A specific contact resistance as low as 4.0×10−6 Ω cm2 was obtained at 500 °C. This low value was obtained by the optimization of Ni/Au film thickness and heat treatment temperatures. Below about 400 °C, Ni was not completely oxidized. On the other hand, at temperatures higher than about 600 °C, the specific contact resistance increased because the NiO detached from p-GaN and the amount of amorphous Ni–Ga–O phase formed was more than that of the sample annealed at 500 °C. The mechanism of obtaining low-resistance ohmic contacts for the oxidized Ni/Au films was explained with a model using energy band diagrams of the Au/p-NiO/p-GaN structure.

[1]  Y. Li,et al.  Low-resistance ohmic contacts to p-type GaN , 2000 .

[2]  Shuji Nakamura,et al.  InGaN-based violet laser diodes , 1999 .

[3]  Y. Su,et al.  High-transparency Ni/Au ohmic contact to p-type GaN , 1999 .

[4]  Seong Jun Park,et al.  Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN , 1999 .

[5]  Y. L. Chen,et al.  High performance AlGaN/GaN HEMT with improved ohmic contacts , 1998 .

[6]  Taeil Kim,et al.  Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment , 1998 .

[7]  Masa-aki Suzuki,et al.  Low-resistance Ta/Ti ohmic contacts for p-type GaN , 1998 .

[8]  F. Ren,et al.  Thermal stability of W and WSix contacts on p-GaN , 1998 .

[9]  Comparison and Investigation of Ohmic Characteristics in the Ni/AuZn and Cr/AuZn Metal Schemes. , 1998 .

[10]  Masahiko Sano,et al.  CONTINUOUS-WAVE OPERATION OF INGAN/GAN/ALGAN-BASED LASER DIODES GROWN ON GAN SUBSTRATES , 1998 .

[11]  Takashi Mukai,et al.  High-power UV InGaN/AlGaN double-heterostructure LEDs , 1998 .

[12]  S. Nakamura,et al.  Amber InGaN-Based Light-Emitting Diodes Operable at High Ambient Temperatures , 1998 .

[13]  Ohmic contact on p-type GaN , 1998 .

[14]  R. F. Karlicek,et al.  Study of contact resistivity, mechanical integrity, and thermal stability of Ti/Al and Ta/Al ohmic contacts to n-type GaN , 1998 .

[15]  Y.-F. Wu,et al.  High Al-content AlGaN/GaN MODFETs for ultrahigh performance , 1998, IEEE Electron Device Letters.

[16]  F. Ren,et al.  300°C GaN/AlGaN Heterojunction Bipolar Transistor , 1998 .

[17]  B. Mensching,et al.  Characterization of Ca and C implanted GaN , 1997 .

[18]  Lai‐Sheng Wang,et al.  A study of nickel monoxide (NiO), nickel dioxide (ONiO), and Ni(O2) complex by anion photoelectron spectroscopy , 1997 .

[19]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[20]  Masayoshi Koike,et al.  Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces , 1997 .

[21]  Thomas N. Jackson,et al.  Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN , 1997 .

[22]  R. Davis,et al.  Ni/Si-Based Ohmic Contacts to p- and n-Type GaN , 1997 .

[23]  Su-hee Chae,et al.  Low Resistance Contacts to P-Type GaN , 1997 .

[24]  S. Hersee,et al.  Temperature Behavior of Pt/Au Ohmic Contacts to p-GaN , 1997 .

[25]  S. H. Kim,et al.  Formation of Ni/Pt/Au Ohmic Contacts to p-GaN , 1997 .

[26]  T. Kozawa,et al.  Schottky barriers and contact resistances on p‐type GaN , 1996 .

[27]  H. Morkoç,et al.  Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN , 1996 .

[28]  F. Ren,et al.  Microstructural stability of ohmic contacts to InxGa1−xN , 1996 .

[29]  H. K. Ng,et al.  Magneto‐optical studies of GaN and GaN/AlxGa1−xN: Donor Zeeman spectroscopy and two dimensional electron gas cyclotron resonance , 1996 .

[30]  J. Zolper,et al.  Ca and O ion implantation doping of GaN , 1996 .

[31]  H. Morkoç,et al.  Very low resistance multilayer Ohmic contact to n‐GaN , 1996 .

[32]  P. Hacke,et al.  Electrical Transport Properties of p-GaN , 1996 .

[33]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[34]  K. Vassilevski,et al.  Fabrication of GaN mesa structures , 1996 .

[35]  Paul H. Holloway,et al.  Comparison of Ni/Au, Pd/Au, and Cr/Au Metallizations for Ohmic Contacts to p-GaN , 1996 .

[36]  M. Yoo,et al.  Cr/Ni/Au ohmic contacts to the moderately doped p- and n-GaN , 1996 .

[37]  Takashi Mukai,et al.  Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes , 1995 .

[38]  S. Pearton,et al.  Implantation and redistribution of dopants and isolation species in GaN and related compounds , 1995 .

[39]  K. S. Stevens,et al.  Photoconductive ultraviolet sensor using Mg‐doped GaN on Si(111) , 1995 .

[40]  K. Hiramatsu,et al.  The barrier height and interface effect of Au-n-GaN Schottky diode , 1995 .

[41]  M. J. Kim,et al.  Ohmic contact formation to doped GaN , 1995 .

[42]  Michael S. Shur,et al.  Microwave performance of a 0.25 m gate AlGaN/GaN heterostructure field effect transistor , 1994 .

[43]  Hadis Morkoç,et al.  Nonalloyed ohmic contacts on GaN using InN/GaN short‐period superlattices , 1994 .

[44]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[45]  H. Morkoç,et al.  Low resistance ohmic contacts on wide band‐gap GaN , 1994 .

[46]  N. Newman,et al.  p‐type gallium nitride by reactive ion‐beam molecular beam epitaxy with ion implantation, diffusion, or coevaporation of Mg , 1994 .

[47]  Shinzo Takata,et al.  Transparent conducting p-type NiO thin films prepared by magnetron sputtering , 1993 .

[48]  M. Asif Khan,et al.  Schottky barrier photodetector based on Mg‐doped p‐type GaN films , 1993 .

[49]  A. Haq,et al.  Simple method for direct synthesis of YBa2Cu4O8 at atmospheric oxygen pressure , 1993 .

[50]  M. Asif Khan,et al.  Metal semiconductor field effect transistor based on single crystal GaN , 1993 .

[51]  M. Asif Khan,et al.  High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers , 1992 .

[52]  S. Hüfner,et al.  The optical gap of NiO , 1992 .

[53]  H. Brom,et al.  Metal-cluster compounds and universal features of the hopping conductivity of solids , 1991 .

[54]  T. Sands,et al.  Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phases , 1988 .

[55]  A. Botha,et al.  Investigation of ring structures for metal-semiconductor contact resistance determination , 1987 .

[56]  N. L. Peterson,et al.  Point defects and diffusion in NiO , 1985 .

[57]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[58]  M. B. Das,et al.  The effects of contact size and non-zero metal resistance on the determination of specific contact resistance , 1982 .

[59]  F. A. Benko,et al.  p‐Type NiO as a Photoelectrolysis Cathode , 1981 .

[60]  F. Käppeler,et al.  Ion beam surface layer analysis , 1976 .

[61]  J. Pankove,et al.  Photoemission from GaN , 1974 .

[62]  C. Neugebauer,et al.  Interdiffusion in thin conductor films — chromium/gold, nickel/gold and chromium silicide/gold , 1971 .

[63]  David Adler,et al.  Electrical and Optical Properties of Narrow-Band Materials , 1970 .

[64]  R. J. Powell,et al.  Optical Properties of NiO and CoO , 1970 .

[65]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[66]  S. Cserveny Potential distribution and capacitance of abrupt heterojunctions , 1968 .

[67]  K. Rao,et al.  Dielectric Properties of Cobalt Oxide, Nickel Oxide, and Their Mixed Crystals , 1965 .

[68]  R.L. Anderson,et al.  Experiments on Ge-GaAs heterojunctions , 1962, IRE Transactions on Electron Devices.

[69]  E. Verwey,et al.  Semi-conductors with partially and with completely filled3d-lattice bands , 1937 .