Every Monotone 3-Graph Property is Testable

Let k ≥ 2 be a fixed integer and P be a property of k-uniform hypergraphs. In other words, P is a (typically infinite) family of k-uniform hypergraphs and we say a given hypergraph H satisfies P if H ∈ P . For a given constant η > 0 a k-uniform hypergraph H on n vertices is η-far from P if no hypergraph obtained from H by changing (adding or deleting) at most ηn edges in H satisfies P . More precisely, H is η-far from P if no hypergraph G with |E(G)4E(H)| ≤ ηn satisfies P . This is a natural measure of how far the given hypergraph H is to satisfy the property P .

[1]  Sanguthevar Rajasekaran Handbook of randomized computing , 2001 .

[2]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[3]  公庄 庸三 Discrete math = 離散数学 , 2004 .

[4]  Noga Alon,et al.  Testing subgraphs in large graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[5]  B. Bollobás,et al.  Extremal Graphs without Large Forbidden Subgraphs , 1978 .

[6]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[7]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[8]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[9]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[10]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[11]  Noga Alon,et al.  Testing k-colorability , 2002, SIAM J. Discret. Math..

[12]  László Lovász,et al.  Graph limits and testing hereditary graph properties , 2005 .

[13]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[14]  E. Fischer THE ART OF UNINFORMED DECISIONS: A PRIMER TO PROPERTY TESTING , 2004 .

[15]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[16]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[17]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[18]  V. Rödl,et al.  On graphs with small subgraphs of large chromatic number , 1985, Graphs Comb..

[19]  Noga Alon,et al.  Homomorphisms in Graph Property Testing - A Survey , 2005, Electron. Colloquium Comput. Complex..

[20]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[21]  Artur Czumaj,et al.  Testing hypergraph colorability , 2005, Theor. Comput. Sci..

[22]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[23]  Yoshiharu Kohayakawa,et al.  Efficient testing of hypergraphs: (Extended abstract) , 2002 .

[24]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[25]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[26]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.