Gaussian state interferometry with passive and active elements

We address precision of optical interferometers fed by Gaussian states and involving passive and/or active elements, such as beam splitters, photodetectors and optical parametric amplifiers. We first address the ultimate bounds to precision by discussing the behaviour of the quantum Fisher information. We then consider photodetection at the output and calculate the sensitivity of the interferometers taking into account the non unit quantum efficiency of the detectors. Our results show that in the ideal case of photon number detectors with unit quantum efficiency the best configuration is the symmetric one, namely, passive (active) interferometer with passive (active) detection stage: in this case one may achieve Heisenberg scaling of sensitivity by suitably optimizing over Gaussian states at the input. On the other hand, in the realistic case of detectors with non unit quantum efficiency, the performances of passive scheme are unavoidably degraded, whereas detectors involving optical parametric amplifiers allow to fully compensate the presence of loss in the detection stage, thus restoring the Heisenberg scaling.

[1]  W. Marsden I and J , 2012 .

[2]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[3]  Matthias D. Lang,et al.  Optimal quantum-enhanced interferometry , 2014, 1406.3274.

[4]  Dorje C. Brody,et al.  Geometrization of statistical mechanics , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  G. D’Ariano,et al.  Lower bounds on phase sensitivity in ideal and feasible measurements. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  Stefano Pirandola,et al.  Quantum Fidelity for Arbitrary Gaussian States. , 2015, Physical review letters.

[7]  Matteo G. A. Paris,et al.  Bounds to precision for quantum interferometry with Gaussian states and operations , 2015 .

[8]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[9]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[10]  Jonathan P. Dowling,et al.  Coherent-light-boosted, sub-shot noise, quantum interferometry , 2009, 0911.5714.

[11]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[12]  Jia Kong,et al.  Quantum metrology with parametric amplifier-based photon correlation interferometers , 2014, Nature Communications.

[13]  Squeezing bandwidth controllable twin beam light and phase sensitive nonlinear interferometer based on atomic ensembles , 2012 .

[14]  D. DiVincenzo,et al.  Dispersive qubit measurement by interferometry with parametric amplifiers , 2014, 1407.3059.

[15]  S. Olivares,et al.  Fidelity matters: the birth of entanglement in the mixing of Gaussian states. , 2011, Physical review letters.

[16]  Matteo G. A. Paris Small amount of squeezing in high-sensitive realistic interferometry , 1995 .

[17]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[18]  Nicolò Spagnolo,et al.  Enhanced resolution of lossy interferometry by coherent amplification of single photons , 2011 .

[19]  Tobias Gehring,et al.  Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.

[20]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[21]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[22]  Paul,et al.  Realistic optical homodyne measurements and quasiprobability distributions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[23]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[24]  C. Helstrom Quantum detection and estimation theory , 1969 .

[25]  S. Olivares,et al.  Optimized interferometry with Gaussian states , 2007 .

[26]  Zhang Jiang,et al.  Quantum Fisher information for states in exponential form , 2013, 1310.2687.

[27]  Alex Monras,et al.  Phase space formalism for quantum estimation of Gaussian states , 2013, 1303.3682.

[28]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[29]  Matthias D. Lang,et al.  Optimal quantum-enhanced interferometry using a laser power source. , 2013, Physical review letters.

[30]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[31]  Taesoo Kim,et al.  Phase sensitivity of a quantum Mach-Zehnder interferometer for a coherent state input , 2009 .

[32]  Hillery,et al.  Interferometers and minimum-uncertainty states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[33]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[34]  N. Treps,et al.  Quantum parameter estimation using general single-mode Gaussian states , 2013, 1307.5318.

[35]  Samuel L. Braunstein,et al.  Generalized Uncertainty Relations: Theory, Examples, , 1996 .

[36]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[37]  Alberto M. Marino,et al.  Effect of losses on the performance of an SU(1,1) interferometer , 2012 .

[38]  Dorje C. Brody,et al.  Statistical geometry in quantum mechanics , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.