Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction

We propose a new approach to mixed-frequency regressions in a high-dimensional environment that resorts to Group Lasso penalization and Bayesian techniques for estimation and inference. In particular, to improve the prediction properties of the model and its sparse recovery ability, we consider a Group Lasso with a spike-and-slab prior. Penalty hyper-parameters governing the model shrinkage are automatically tuned via an adaptive MCMC algorithm. We establish good frequentist asymptotic properties of the posterior of the in-sample and out-of-sample prediction error, we recover the optimal posterior contraction rate, and we show optimality of the posterior predictive density. Simulations show that the proposed models have good selection and forecasting performance in small samples, even when the design matrix presents cross-correlation. When applied to forecasting U.S. GDP, our penalized regressions can outperform many strong competitors. Results suggest that financial variables may have some, although very limited, short-term predictive content.

[1]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[2]  Qing Li,et al.  The Bayesian elastic net , 2010 .

[3]  Aad van der Vaart,et al.  Fundamentals of Nonparametric Bayesian Inference , 2017 .

[4]  Serena Ng,et al.  Working Paper Series , 2019 .

[5]  Matteo Mogliani,et al.  Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information? , 2015 .

[6]  Jennifer L. Castle,et al.  Nowcasting is not Just Contemporaneous Forecasting , 2009, National Institute Economic Review.

[7]  Eric Moulines,et al.  Stability of Stochastic Approximation under Verifiable Conditions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[9]  Deborah Gefang,et al.  Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage , 2014 .

[10]  Jim E. Griffin,et al.  Adaptive Monte Carlo for Bayesian Variable Selection in Regression Models , 2013 .

[11]  Dimitris Korobilis,et al.  Adaptive hierarchical priors for high-dimensional vector autoregressions , 2019 .

[12]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[13]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[14]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .

[15]  Massimiliano Marcellino,et al.  Forecasting economic activity with targeted predictors , 2015 .

[16]  J. Stock,et al.  Combination forecasts of output growth in a seven-country data set , 2004 .

[17]  P. Priouret,et al.  Bayesian Time Series Models: Adaptive Markov chain Monte Carlo: theory and methods , 2011 .

[18]  Frank T. Magiera,et al.  There Is a Risk–Return Trade-Off After All , 2005 .

[19]  Yoshimasa Uematsu,et al.  High‐dimensional macroeconomic forecasting and variable selection via penalized regression , 2019, The Econometrics Journal.

[20]  S. Geer,et al.  Oracle Inequalities and Optimal Inference under Group Sparsity , 2010, 1007.1771.

[21]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[22]  Jennifer L. Castle,et al.  The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry , 2009 .

[23]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[24]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[25]  A. Girardi,et al.  The role of indicator selection in nowcasting euro-area GDP in pseudo-real time , 2014, Empirical Economics.

[26]  Xiaofang Xu,et al.  Bayesian Variable Selection and Estimation for Group Lasso , 2015, 1512.01013.

[27]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[28]  Massimiliano Marcellino,et al.  Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility , 2012, Journal of the Royal Statistical Society. Series A,.

[29]  Eric Ghysels,et al.  Regression Models with Mixed Sampling Frequencies , 2010 .

[30]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[31]  Kshitij Khare,et al.  Geometric ergodicity of the Bayesian lasso , 2013 .

[32]  A. V. D. Vaart,et al.  BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.

[33]  Massimiliano Marcellino,et al.  Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials , 2015 .

[34]  G. Koop,et al.  Bayesian Compressed Vector Autoregressions , 2017, Journal of Econometrics.

[35]  K. Lange A gradient algorithm locally equivalent to the EM algorithm , 1995 .

[36]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[37]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[38]  Catherine Doz,et al.  A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models , 2006, Review of Economics and Statistics.

[39]  Serena Ng,et al.  Determining the Number of Primitive Shocks in Factor Models , 2007 .

[40]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[41]  Massimiliano Marcellino,et al.  Midas Vs. Mixed-Frequency VAR: Nowcasting GDP in the Euro Area , 2009 .

[42]  G. Casella,et al.  Penalized regression, standard errors, and Bayesian lassos , 2010 .

[43]  Lin Zhang,et al.  Bayesian hierarchical structured variable selection methods with application to molecular inversion probe studies in breast cancer , 2014 .

[44]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[45]  Dimitris Korobilis,et al.  Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors , 2011 .

[46]  A. Timmermann,et al.  A MIDAS Approach to Modeling First and Second Moment Dynamics , 2015 .

[47]  Vivekananda Roy,et al.  Selection of Tuning Parameters, Solution Paths and Standard Errors for Bayesian Lassos , 2017 .

[48]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[49]  J. Cooper Two Approaches to Polynomial Distributed Lags Estimation: An Expository Note and Comment , 1972 .

[50]  Serena Ng,et al.  Variable Selection in Predictive Regressions , 2013 .

[51]  Michael P. Clements,et al.  Forecasting US output growth using leading indicators: an appraisal using MIDAS models , 2009 .

[52]  Francis X. Diebold,et al.  Real-Time Measurement of Business Conditions , 2007 .

[53]  S. Sarkar,et al.  Bayesian Approach to Constructing Multiple Confidence Intervals of Selected Parameters with Sparse Signals , 2015 .

[54]  G. Casella Empirical Bayes Gibbs sampling. , 2001, Biostatistics.

[55]  Hao Helen Zhang,et al.  ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.

[56]  Hansheng Wang,et al.  Computational Statistics and Data Analysis a Note on Adaptive Group Lasso , 2022 .

[57]  Michael P. Clements,et al.  Macroeconomic Forecasting With Mixed-Frequency Data , 2008 .

[58]  Laurent A.F. Callot,et al.  Oracle Efficient Estimation and Forecasting with the Adaptive Lasso and the Adaptive Group Lasso in Vector Autoregressions , 2012 .

[59]  C. Schumacher MIDAS regressions with time-varying parameters: An application to corporate bond spreads and GDP in the Euro area , 2014 .

[60]  Jianqing Fan,et al.  Nonconcave Penalized Likelihood With NP-Dimensionality , 2009, IEEE Transactions on Information Theory.

[61]  Marie Bessec,et al.  Short-Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors , 2012 .

[62]  B. Rossi,et al.  Evaluating Predictive Densities of U.S. Output Growth and Inflation in a Large Macroeconomic Data Set , 2013 .

[63]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[64]  M. West On scale mixtures of normal distributions , 1987 .

[65]  Clément Marsilli,et al.  Variable Selection in Predictive MIDAS Models , 2014 .

[66]  Pascal Sarda,et al.  Factor models and variable selection in high-dimensional regression analysis , 2011 .

[67]  Yves F. Atchadé,et al.  A computational framework for empirical Bayes inference , 2011, Stat. Comput..

[69]  C. Geyer,et al.  Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model , 1998 .

[70]  Jennifer L. Castle,et al.  Nowcasting from disaggregates in the face of location shifts , 2010 .

[71]  M. Yuan,et al.  On the non‐negative garrotte estimator , 2007 .

[72]  E. George,et al.  The Spike-and-Slab LASSO , 2018 .

[73]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[74]  E. Ghysels,et al.  MIDAS Regressions: Further Results and New Directions , 2006 .

[75]  James Mitchell,et al.  Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness , 2011 .

[76]  Boriss Siliverstovs Short-Term Forecasting with Mixed-Frequency Data: A MIDASSO Approach , 2015 .

[77]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[78]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[79]  Massimiliano Marcellino,et al.  Factor Midas for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP , 2008 .

[80]  S. Ghosal,et al.  Bayesian linear regression for multivariate responses under group sparsity , 2018, Bernoulli.

[81]  J. Berger,et al.  Optimal predictive model selection , 2004, math/0406464.

[82]  Chenlei Leng,et al.  Bayesian adaptive Lasso , 2010, Annals of the Institute of Statistical Mathematics.

[83]  Serena Ng,et al.  Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data , 2016 .

[84]  Domenico Giannone,et al.  Economic Predictions with Big Data: The Illusion of Sparsity , 2017, Econometrica.