Performance Evaluation of a Multi-band UWB Location and Communication System Based on Modified Gegenbauer Functions

Ultra wide band (UWB) may offer very efficient solutions for various communication and sensing applications. Two approaches have emerged, which meet all the communication requirements: impulse and multi-band systems. The present work is concerned in the second approach. So, we propose to use orthogonal functions called Modified Gegenbauer Functions (MGF) in a multi-band UWB system occupying the 3–6 GHz frequency band. Different scenarios are studied and compared in the scope of a system offering communication and location capabilities for subway trains. In order to evaluate the performance of the proposed system, the bit error rate (BER) values for communication are calculated and analyzed in the presence of multi-user interference, assuming asynchonous users. It is shown that Gegenbauer functions offer the performance required for our multi-band UWB communication and location system.

[1]  Andrew J. Viterbi,et al.  Principles of coherent communication , 1966 .

[2]  Branimir R. Vojcic,et al.  Ultra wide band wireless communications: A tutorial , 2003, Journal of Communications and Networks.

[3]  Daniel W. Bliss,et al.  Ultra-wideband (UWB) transmitter location using time difference of arrival (TDOA) techniques , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[4]  Behnaam Aazhang,et al.  Multistage detection in asynchronous code-division multiple-access communications , 1990, IEEE Trans. Commun..

[5]  Junchen Du,et al.  High-performance DSPs , 2000 .

[6]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[7]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[8]  Rodger E. Ziemer,et al.  Introduction to digital communication , 1992 .

[9]  Atika Rivenq,et al.  Multi-User Ultra-Wide Band Communication System Based on Modified Gegenbauer and Hermite Functions , 2005, Wirel. Pers. Commun..

[10]  Robert A. Scholtz,et al.  Multiple access with time-hopping impulse modulation , 1993, Proceedings of MILCOM '93 - IEEE Military Communications Conference.

[11]  Anuj Batra,et al.  Multi-band OFDM Physical Layer Proposal , 2003 .

[12]  Marc Heddebaut,et al.  Comparison between DS-CDMA and modified Gegenbauer functions for a multiuser communication ultra-wideband system , 2005 .

[13]  Dariush Divsalar,et al.  Improved parallel interference cancellation for CDMA , 1998, IEEE Trans. Commun..

[14]  Lang Tong,et al.  Single-user channel estimation and equalization , 2000, IEEE Signal Process. Mag..

[15]  Dimitrie C. Popescu,et al.  Narrowband Interference Avoidance in OFDM-Based UWB Communication Systems , 2007, IEEE Transactions on Communications.

[16]  V. Prabhu,et al.  PSK Performance with Imperfect Carrier Phase Recovery , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[18]  P. M. Grant,et al.  Digital communications. 3rd ed , 2009 .

[19]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[20]  Marvin K. Simon,et al.  Telecommunication Systems Engineering , 2011 .

[21]  J. M. Holtzman,et al.  CDMA power control for wireless networks , 1992 .

[22]  A. H. Tewfik,et al.  Multi-user UWB-OFDM communications , 2003, 2003 IEEE Pacific Rim Conference on Communications Computers and Signal Processing (PACRIM 2003) (Cat. No.03CH37490).

[23]  John G. Proakis,et al.  Digital Communications , 1983 .

[24]  Brian D. Woerner,et al.  Performance analysis of CDMA with imperfect power control , 1996, IEEE Trans. Commun..