Application of the discrete Wentzel–Kramers–Brillouin method to spin tunneling

A discrete version of the Wentzel–Kramers–Brillouin (WKB) method is developed and applied to calculate the tunnel splittings between classically degenerate states of spin Hamiltonians. The results for particular model problems are in complete accord with those previously found using instanton methods. The discrete WKB method is more elementary and also yields wave functions.

[1]  R. Schilling,et al.  Spin tunnelling in the semiclassical limit , 1986 .

[2]  J. L. Hemmen,et al.  Tunnelling of Quantum Spins , 1986 .

[3]  V. Belinicher,et al.  Instanton picture of the spin tunneling in the Lipkin model , 2001, cond-mat/0102073.

[4]  John R. Klauder,et al.  Path integrals and stationary-phase approximations , 1979 .

[5]  H. Kuratsuji,et al.  A semiclassical treatment of path integrals for the spin system , 1981 .

[6]  Kim,et al.  Macroscopic magnetization tunneling and coherence: Calculation of tunneling-rate prefactors. , 1992, Physical review. B, Condensed matter.

[7]  Universal upper bound for the tunneling rate of a large quantum spin , 1988 .

[8]  B. Mottelson,et al.  ΔI = 4 structure in superdeformed rotational band - deformation with C4v symmetry , 1995 .

[9]  Klaus Schulten,et al.  Semiclassical approximations to 3j- and 6j-coefficients for quantum­ mechanical coupling of angular momenta An inverse problem in statistical mechanics Direct determination of the Iwasawa decomposition for noncompact , 1975 .

[10]  J. L. Hemmen,et al.  Tunneling of quantum spins , 1986 .

[11]  R. Shankar Bohr-Sommerfeld quantization of pseudospin Hamiltonians , 1980 .

[12]  R. Schilling,et al.  Magnetic field dependence of the tunnelling splitting of quantum spins , 1986 .

[13]  A. Messiah Quantum Mechanics , 1961 .

[14]  A. Klein,et al.  Wentzel-Kramers-Brillouin Quantization of Pseudospin Hamiltonians , 1981 .

[15]  H. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .

[16]  C. W. Patterson,et al.  Rotational energy surfaces and high‐J eigenvalue structure of polyatomic molecules , 1984 .

[17]  DiVincenzo,et al.  Suppression of tunneling by interference in half-integer-spin particles. , 1992, Physical review letters.

[18]  S. Coleman,et al.  Aspects of Symmetry , 1985 .

[19]  Garg Dissipation and interference effects in macroscopic magnetization tunneling and coherence. , 1995, Physical review. B, Condensed matter.

[20]  E. Chudnovsky,et al.  Quantum tunneling of magnetization in small ferromagnetic particles. , 1988, Physical review letters.

[21]  J. L. Hemmen,et al.  Tunnelling of a large spin: mapping onto a particle problem , 1987 .

[22]  S. Coleman The Fate of the False Vacuum. 1. Semiclassical Theory , 1977 .

[23]  Anupam Garg,et al.  Topologically Quenched Tunnel Splitting in Spin Systems without Kramers' Degeneracy , 1993 .

[24]  P. A. Braun Discrete semiclassical methods in the theory of Rydberg atoms in external fields , 1993 .

[25]  S. Tomsovic Tunneling in Complex Systems , 1998 .