Effect of silane coupling agent and cellulose nanocrystals loading on the properties of acrylonitrile butadiene rubber/natural rubber nanocomposites

[1]  Xianxu Zhan,et al.  Separation cellulose nanocrystals from microcrystalline cellulose using hydrated deep eutectic solvent and high shear force , 2022, Industrial Crops and Products.

[2]  Vijai Kumar Gupta,et al.  Cellulosic Pine Needles-Based Biorefinery for a Circular Bioeconomy. , 2022, Bioresource technology.

[3]  P. Phinyocheep,et al.  A simple method for extraction of cellulose nanocrystals from a green Luffa cylindrica biomaterial and its characteristics , 2022, Polymer international.

[4]  J. Andrew,et al.  Sequential extraction of carbohydrates and lignin from agricultural waste and their structural characterization , 2022, Biomaterials and Polymers Horizon.

[5]  Kusmono,et al.  Isolation and Properties of Cellulose Nanocrystals Fabricated by Ammonium Persulfate Oxidation from Sansevieria trifasciata Fibers , 2022, Fibers.

[6]  Vineet Kumar,et al.  Studies on high performance rubber composites by incorporating titanium dioxide particles with different surface area and particle size , 2022, Nanofabrication.

[7]  Xinjin Zhang,et al.  Elastic composites fabricating for electromagnetic interference shielding based on MWCNTs and Fe 3 O 4 unique distribution in immiscible NR / NBR blends , 2022, Polymer Engineering & Science.

[8]  S. R. Vadera,et al.  Size dependent percolation threshold and microwave absorption properties in nano carbon black/silicon rubber composites , 2022, Journal of Applied Physics.

[9]  B. Adhikari,et al.  Surface modification of the cellulose nanocrystals through vinyl silane grafting. , 2022, International Journal of Biological Macromolecules.

[10]  V. Thakur,et al.  Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications , 2022, Industrial Crops and Products.

[11]  T. Mandal,et al.  Multifunctional properties of chemically reduced graphene oxide and silicone rubber composite: Facile synthesis and application as soft composites for piezoelectric energy harvesting , 2022, eXPRESS Polymer Letters.

[12]  M. Hussin,et al.  Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: Mechanical, flexibility and dynamical properties , 2022, Industrial Crops and Products.

[13]  C. Nakason,et al.  Internal polymerization of epoxy group of epoxidized natural rubber by ferric chloride filled with carbon nanotubes: Mechanical, morphological, thermal and electrical properties of rubber vulcanizates , 2022, eXPRESS Polymer Letters.

[14]  P. Sae‐Oui,et al.  Reinforcement of surface-modified cellulose nanofibrils extracted from Napier grass stem in natural rubber composites , 2021 .

[15]  A. Masa,et al.  Selectively Etched Halloysite Nanotubes as Performance Booster of Epoxidized Natural Rubber Composites , 2021, Polymers.

[16]  T. Mekonnen,et al.  Bioresourced fillers for rubber composite sustainability: current development and future opportunities , 2021, Green Chemistry.

[17]  A. Dufresne,et al.  Cellulose nanocrystal‐mediated assembly of graphene oxide in natural rubber nanocomposites with high electrical conductivity , 2021, Journal of Applied Polymer Science.

[18]  Chuanhui Xu,et al.  Mechanical Strong and Recyclable Rubber Nanocomposites with Sustainable Cellulose Nanocrystals and Interfacial Exchangeable Bonds , 2021, ACS Sustainable Chemistry & Engineering.

[19]  M. Saeb,et al.  Cellulosic bionanocomposites based on acrylonitrile butadiene rubber and Cuscuta reflexa: adjusting structure-properties balance for higher performance , 2021, Cellulose.

[20]  Tao Liu,et al.  Effect of Micro-Scale and Nano-Scale Boron Nitride on Thermal Property of Silicone Rubber Via Experimental and Simulation Method , 2021, Silicon.

[21]  S. Siengchin,et al.  A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites , 2021 .

[22]  Bharat P. Kapgate,et al.  Synthesis and chemical modification of crystalline nanocellulose to reinforce natural rubber composites , 2020 .

[23]  B. Kandasubramanian,et al.  Nanocellulose based biodegradable polymers , 2020, European Polymer Journal.

[24]  M. Rahman,et al.  Influence of Bio-Based Plasticizers on the Properties of NBR Materials , 2020, Materials.

[25]  Q. Zheng,et al.  Enhancing Performances of Polyamide 66 Short Fiber/Natural Rubber Composites via In Situ Vulcanization Reaction , 2020, Fibers and Polymers.

[26]  S. Wen,et al.  Novel reinforcement behavior in nanofilled natural rubber (NR) / butadiene-acrylonitrile rubber (NBR) blends: Filling-polymer network and supernanosphere , 2020 .

[27]  Sabu Thomas,et al.  Rubber–rubber blends: A critical review , 2020 .

[28]  P. Dittanet,et al.  Synthesis of Natural Composite of Natural Rubber Filling Chitosan Nanoparticles , 2019, Key Engineering Materials.

[29]  Wenjie Mou,et al.  Bio-based epoxidized natural rubber/chitin nanocrystals composites: Self-healing and enhanced mechanical properties , 2019, Composites Part B: Engineering.

[30]  Long Jiang,et al.  High-Performance Styrene-Butadiene Rubber Nanocomposites Reinforced by Surface-Modified Cellulose Nanofibers , 2019, ACS omega.

[31]  S. Utara,et al.  Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites , 2019, Cellulose.

[32]  Sabu Thomas,et al.  Role of CNT/clay hybrid on the mechanical, electrical and transport properties of NBR/NR blends , 2019, Polymer Bulletin.

[33]  K. Strzelec,et al.  Silanized cereal straw as a novel, functional filler of natural rubber biocomposites , 2018, Cellulose.

[34]  G. Crăciun,et al.  Degradation Studies Realized on Natural Rubber and Plasticized Potato Starch Based Eco-Composites Obtained by Peroxide Cross-Linking , 2018, International journal of molecular sciences.

[35]  W. Gao,et al.  Cellulose nanocrystals functionalized with amino-silane and epoxy-poly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism , 2018, Cellulose.

[36]  Sabu Thomas,et al.  Investigation of the mechanical, thermal and transport properties of NR/NBR blends: impact of organoclay content , 2018, Journal of Polymer Research.

[37]  Zheng Peng,et al.  Influence of acetone extract from natural rubber on the structure and interface interaction in NR/silica composites , 2017 .

[38]  N. Muhd Julkapli,et al.  Microstructures of Nanocellulose and Reinforcement in Nitrile Butadiene Rubber (NBR) Composites , 2017 .

[39]  S. Utara,et al.  Effect of surface modification of silicon carbide nanoparticles on the properties of nanocomposites based on epoxidized natural rubber/natural rubber blends , 2017 .

[40]  Liqun Zhang,et al.  Preparation and Performance of Silica/Epoxy Group-Functionalized Biobased Elastomer Nanocomposite , 2017 .

[41]  K. Pal,et al.  Rubber blend nanocomposites , 2017 .

[42]  H. A. Silvério,et al.  Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. , 2016, Carbohydrate polymers.

[43]  Yaqing Liu,et al.  Effect of curing temperature on properties of semi-efficient vulcanized natural rubber , 2016 .

[44]  A. Dufresne,et al.  Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. , 2016, Carbohydrate polymers.

[45]  Sabu Thomas,et al.  Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. , 2015, International journal of biological macromolecules.

[46]  Sizhu Wu,et al.  Effects of lanthanum complex on the thermo-oxidative aging of natural rubber , 2015 .

[47]  Christopher G. Robertson,et al.  Linear‐nonlinear dichotomy of the rheological response of particle‐filled polymers , 2014 .

[48]  G. Rempel,et al.  Hydrogenated nanosized polyisoprene as a thermal and ozone stabilizer for natural rubber blends , 2014 .

[49]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[50]  P. Sae-oui,et al.  Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: Effect of preparation methods , 2013 .

[51]  Sabu Thomas,et al.  Transport of organic solvents through natural rubber/nitrile rubber/organically modified montmorillonite nanocomposites , 2013, Journal of Materials Science.

[52]  G. Heinrich,et al.  Effect of sol–gel derived in situ silica on the morphology and mechanical behavior of natural rubber and acrylonitrile butadiene rubber blends , 2012, Journal of Sol-Gel Science and Technology.

[53]  N. Hinchiranan,et al.  Styrene/Acrylonitrile Graft Natural Rubber as Compatibilizer in Rubber Blends , 2011 .

[54]  Liqun Zhang,et al.  The influence of in situ modification of silica on filler network and dynamic mechanical properties of silica‐filled solution styrene–butadiene rubber , 2008 .

[55]  Miguel A. López-Manchado,et al.  Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends , 2007 .

[56]  P. Sae-oui,et al.  Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends , 2007 .

[57]  S. Ha,et al.  Thermal aging behaviors of rubber vulcanizates cured with single and binary-cure systems , 2006 .

[58]  Nittaya Rattanasom,et al.  Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends , 2005 .

[59]  A. Zadhoush,et al.  Physicomechanical properties of α‐cellulose–filled styrene–butadiene rubber composites , 2005 .

[60]  T. Yasin,et al.  Effect of acrylonitrile content on physical properties of electron beam irradiated acrylonitrile–butadiene rubber , 2003 .

[61]  C. Sirisinha,et al.  Oil resistance controlled by phase morphology in natural rubber/nitrile rubber blends , 2003 .

[62]  H. Ismail,et al.  Curing and Mechanical Properties of Nitrile and Natural Rubber Blends , 2001 .

[63]  H. Ismail,et al.  CURING CHARACTERISTICS OF NITRILE AND NATURAL RUBBER BLENDS , 2001 .

[64]  C. Sirisinha,et al.  Changes in morphology and properties of NR–NBR blends. Effect of viscosity ratio modified by liquid natural rubber and epoxidised liquid natural rubber , 2001 .

[65]  I. Sutherland,et al.  Compatibilising effect of carbon black on morphology of NR–NBR blends , 2001 .

[66]  M. Klüppel,et al.  Carbon Black Distribution in Rubber Blends: A Dynamic-Mechanical Analysis , 1999 .

[67]  A. R. Payne Effect of dispersion on the dynamic properties of filler‐loaded rubbers , 1965 .

[68]  A. R. Payne The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Part I , 1963 .