Estimation of the inverted exponentiated Rayleigh Distribution Based on Adaptive Type II Progressive Hybrid Censored Sample

Abstract In this paper, the problem of estimating parameters of the inverted exponentiated Rayleigh distribution under adaptive Type II progressive hybrid censored sample is discussed. The maximum likelihood estimators (MLEs) are developed for estimating the unknown parameters. The asymptotic normality of the MLEs is used to construct the approximate confidence intervals for the parameters. By applying the Bayesian approach, the estimators of the unknown parameters are derived under symmetric and asymmetric loss functions. The Bayesian estimates are evaluated by using the Lindley’s approximation as well as the Monte Carlo Markov chain (MCMC) technique together with Metropolis–Hastings algorithm. The MCMC samples are further utilized to construct the Bayesian intervals for the unknown parameters. Monte Carlo simulations are implemented and observations are given. Finally, the data of the maximum spreading diameter of nano-droplet impact on hydrophobic surfaces is analyzed to illustrative purposes.

[1]  Debasis Kundu,et al.  Analysis of Type-II progressively hybrid censored data , 2006, Comput. Stat. Data Anal..

[2]  Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data , 2014 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  Estimations from the exponentiated rayleigh distribution based on generalized Type-II hybrid censored data , 2017 .

[5]  H. Panahi Estimation of the Burr type III distribution with application in unified hybrid censored sample of fracture toughness , 2017 .

[6]  Narayanaswamy Balakrishnan,et al.  Exact Likelihood Inference for an Exponential Parameter Under Progressive Hybrid Censoring Schemes , 2008 .

[7]  Luca Martino,et al.  The Recycling Gibbs sampler for efficient learning , 2016, Digit. Signal Process..

[8]  Debasis Kundu,et al.  Hybrid censoring: Models, inferential results and applications , 2013, Comput. Stat. Data Anal..

[9]  Karl-Rudolf Koch,et al.  Gibbs sampler by sampling-importance-resampling , 2007 .

[10]  Debasis Kundu,et al.  Statistical analysis of exponential lifetimes under an adaptive Type‐II progressive censoring scheme , 2009 .

[11]  Ahmed A. Soliman,et al.  Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes , 2016 .

[12]  M. Nassar,et al.  Estimation of the inverse Weibull parameters under adaptive type-II progressive hybrid censoring scheme , 2017, J. Comput. Appl. Math..

[13]  Debasis Kundu,et al.  Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.

[14]  Narayanaswamy Balakrishnan,et al.  Some properties of progressive censored order statistics from arbitrary and uniform distributions with applications to inference and simulation , 1998 .

[15]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[16]  Narayanaswamy Balakrishnan,et al.  A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .

[17]  Quanxi Shao,et al.  Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis / Modèles d’extrêmes utilisant le système Burr XII étendu à trois paramètres et application à l’analyse fréquentielle des crues , 2004 .

[18]  Ali A. Ismail Inference for a step-stress partially accelerated life test model with an adaptive Type-II progressively hybrid censored data from Weibull distribution , 2014, J. Comput. Appl. Math..

[19]  Bhupendra Singh,et al.  Parameter estimation of Lindley distribution with hybrid censored data , 2013, Int. J. Syst. Assur. Eng. Manag..

[20]  M. A. Mahmoud,et al.  Estimation of Generalized Pareto under an Adaptive Type-II Progressive Censoring , 2013 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[23]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[24]  Sanku Dey,et al.  Analysis of Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring Scheme , 2018 .

[25]  Hanieh Panahi,et al.  Estimation Methods for the Generalized Inverted Exponential Distribution Under Type II Progressively Hybrid Censoring with Application to Spreading of Micro-Drops Data , 2017 .

[26]  Hai-bao Hu,et al.  Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces , 2014 .

[27]  Bharat Kumar Saxena,et al.  Comparison of Weibull parameters computation methods and analytical estimation of wind turbine capacity factor using polynomial power curve model: case study of a wind farm , 2015 .

[28]  Debasis Kundu,et al.  Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data , 2010, Comput. Stat. Data Anal..

[29]  Wei Shao,et al.  An efficient proposal distribution for Metropolis-Hastings using a B-splines technique , 2013, Comput. Stat. Data Anal..

[30]  Y. Tripathi,et al.  Estimation and prediction for an inverted exponentiated Rayleigh distribution under hybrid censoring , 2018 .

[31]  N. Balakrishnan,et al.  On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data , 2008 .