Estimation of the inverted exponentiated Rayleigh Distribution Based on Adaptive Type II Progressive Hybrid Censored Sample
暂无分享,去创建一个
[1] Debasis Kundu,et al. Analysis of Type-II progressively hybrid censored data , 2006, Comput. Stat. Data Anal..
[3] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[4] Estimations from the exponentiated rayleigh distribution based on generalized Type-II hybrid censored data , 2017 .
[5] H. Panahi. Estimation of the Burr type III distribution with application in unified hybrid censored sample of fracture toughness , 2017 .
[6] Narayanaswamy Balakrishnan,et al. Exact Likelihood Inference for an Exponential Parameter Under Progressive Hybrid Censoring Schemes , 2008 .
[7] Luca Martino,et al. The Recycling Gibbs sampler for efficient learning , 2016, Digit. Signal Process..
[8] Debasis Kundu,et al. Hybrid censoring: Models, inferential results and applications , 2013, Comput. Stat. Data Anal..
[9] Karl-Rudolf Koch,et al. Gibbs sampler by sampling-importance-resampling , 2007 .
[10] Debasis Kundu,et al. Statistical analysis of exponential lifetimes under an adaptive Type‐II progressive censoring scheme , 2009 .
[11] Ahmed A. Soliman,et al. Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes , 2016 .
[12] M. Nassar,et al. Estimation of the inverse Weibull parameters under adaptive type-II progressive hybrid censoring scheme , 2017, J. Comput. Appl. Math..
[13] Debasis Kundu,et al. Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.
[14] Narayanaswamy Balakrishnan,et al. Some properties of progressive censored order statistics from arbitrary and uniform distributions with applications to inference and simulation , 1998 .
[15] M. Tanner,et al. Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .
[16] Narayanaswamy Balakrishnan,et al. A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .
[17] Quanxi Shao,et al. Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis / Modèles d’extrêmes utilisant le système Burr XII étendu à trois paramètres et application à l’analyse fréquentielle des crues , 2004 .
[18] Ali A. Ismail. Inference for a step-stress partially accelerated life test model with an adaptive Type-II progressively hybrid censored data from Weibull distribution , 2014, J. Comput. Appl. Math..
[19] Bhupendra Singh,et al. Parameter estimation of Lindley distribution with hybrid censored data , 2013, Int. J. Syst. Assur. Eng. Manag..
[20] M. A. Mahmoud,et al. Estimation of Generalized Pareto under an Adaptive Type-II Progressive Censoring , 2013 .
[21] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[22] D. Lindley,et al. Approximate Bayesian methods , 1980 .
[23] W. Gilks,et al. Adaptive Rejection Sampling for Gibbs Sampling , 1992 .
[24] Sanku Dey,et al. Analysis of Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring Scheme , 2018 .
[25] Hanieh Panahi,et al. Estimation Methods for the Generalized Inverted Exponential Distribution Under Type II Progressively Hybrid Censoring with Application to Spreading of Micro-Drops Data , 2017 .
[26] Hai-bao Hu,et al. Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces , 2014 .
[27] Bharat Kumar Saxena,et al. Comparison of Weibull parameters computation methods and analytical estimation of wind turbine capacity factor using polynomial power curve model: case study of a wind farm , 2015 .
[28] Debasis Kundu,et al. Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data , 2010, Comput. Stat. Data Anal..
[29] Wei Shao,et al. An efficient proposal distribution for Metropolis-Hastings using a B-splines technique , 2013, Comput. Stat. Data Anal..
[30] Y. Tripathi,et al. Estimation and prediction for an inverted exponentiated Rayleigh distribution under hybrid censoring , 2018 .
[31] N. Balakrishnan,et al. On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data , 2008 .