A finite embedding theorem for partial Steiner 3-designs

A Steiner system S ( t , k , n ) is a k-uniform set system on n for which every t-set is covered exactly once. More generally, a partial Steiner system P ( t , k , n ) is a k-uniform set system on n where every t-set is covered at most once. Let q be a prime power. Using circle geometries and field-based block spreading, we give an explicit embedding for any partial Steiner system P ( 3 , q + 1 , n ) into a Steiner system S ( 3 , q + 1 , q m + 1 ) for some m = m ( q , n ) .

[1]  Hedvig Mohácsy,et al.  Candelabra systems and designs , 2002 .

[2]  Raphael Yuster Fractional decompositions of dense hypergraphs , 2007 .

[3]  Bernhard Ganter Finite partial quadruple systems can be finitely embedded , 1974, Discret. Math..

[4]  Charles C Lindner,et al.  Finite embedding theorems for partial designs and algebras , 1977 .

[5]  Bernhard Ganter,et al.  Endliche Vervollständigung endlicher partieller Steinerscher Systeme , 1971 .

[6]  Christine Treash The completion of finite incomplete Steiner triple systems with applications to loop theory , 1971 .

[7]  Hedvig Mohácsy,et al.  A construction for group divisible t-designs with strength t⩾2 and index unity , 2003 .

[8]  Alan Hartman,et al.  The fundamental construction for 3-designs , 1994, Discret. Math..

[9]  K. T. Phelps,et al.  Infinite Classes of Cyclic Steiner Quadruple Systems , 1980 .

[10]  C. A. Rodger,et al.  Embedding Partial Graph Designs, Block Designs, and Triple Systems with λ > 1 , 1986, Canadian Mathematical Bulletin.

[11]  Peter Keevash The existence of designs , 2014, 1401.3665.

[12]  E. Witt über Steinersche Systeme , 1937 .

[13]  Haim Hanani,et al.  On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.

[14]  Robert W. Quackenbush Near vector spaces over GF(q) and (v,q+1,1)-BIBD's , 1975 .

[15]  Richard M. Wilson,et al.  Signed Hypergraph Designs and Diagonal Forms for Some Incidence Matrices , 1999, Des. Codes Cryptogr..

[16]  John L. Blanchard,et al.  A construction for orthorgonal arrays with strength t>=3 , 1995, Discret. Math..

[17]  Van H. Vu On a Theorem of Ganter , 1997, Comb. Probab. Comput..

[18]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[19]  Darryn Bryant,et al.  A proof of Lindner's conjecture on embeddings of partial Steiner triple systems , 2009 .

[20]  John L. Blanchard,et al.  An extension theorem for Steiner systems , 1995, Discret. Math..

[21]  John L. Blanchard,et al.  A Construction for Steiner 3-Designs , 1995, J. Comb. Theory, Ser. A.