A finite embedding theorem for partial Steiner 3-designs
暂无分享,去创建一个
[1] Hedvig Mohácsy,et al. Candelabra systems and designs , 2002 .
[2] Raphael Yuster. Fractional decompositions of dense hypergraphs , 2007 .
[3] Bernhard Ganter. Finite partial quadruple systems can be finitely embedded , 1974, Discret. Math..
[4] Charles C Lindner,et al. Finite embedding theorems for partial designs and algebras , 1977 .
[5] Bernhard Ganter,et al. Endliche Vervollständigung endlicher partieller Steinerscher Systeme , 1971 .
[6] Christine Treash. The completion of finite incomplete Steiner triple systems with applications to loop theory , 1971 .
[7] Hedvig Mohácsy,et al. A construction for group divisible t-designs with strength t⩾2 and index unity , 2003 .
[8] Alan Hartman,et al. The fundamental construction for 3-designs , 1994, Discret. Math..
[9] K. T. Phelps,et al. Infinite Classes of Cyclic Steiner Quadruple Systems , 1980 .
[10] C. A. Rodger,et al. Embedding Partial Graph Designs, Block Designs, and Triple Systems with λ > 1 , 1986, Canadian Mathematical Bulletin.
[11] Peter Keevash. The existence of designs , 2014, 1401.3665.
[12] E. Witt. über Steinersche Systeme , 1937 .
[13] Haim Hanani,et al. On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.
[14] Robert W. Quackenbush. Near vector spaces over GF(q) and (v,q+1,1)-BIBD's , 1975 .
[15] Richard M. Wilson,et al. Signed Hypergraph Designs and Diagonal Forms for Some Incidence Matrices , 1999, Des. Codes Cryptogr..
[16] John L. Blanchard,et al. A construction for orthorgonal arrays with strength t>=3 , 1995, Discret. Math..
[17] Van H. Vu. On a Theorem of Ganter , 1997, Comb. Probab. Comput..
[18] Richard M. Wilson,et al. An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.
[19] Darryn Bryant,et al. A proof of Lindner's conjecture on embeddings of partial Steiner triple systems , 2009 .
[20] John L. Blanchard,et al. An extension theorem for Steiner systems , 1995, Discret. Math..
[21] John L. Blanchard,et al. A Construction for Steiner 3-Designs , 1995, J. Comb. Theory, Ser. A.