Numerical Optimization

Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

[1]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[2]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[3]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[4]  Chandler Davis THEORY OF POSITIVE LINEAR DEPENDENCE. , 1954 .

[5]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[6]  H. Akaike On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method , 1959 .

[7]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[8]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[9]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[10]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[11]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[12]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[13]  P. Wolfe The Composite Simplex Algorithm , 1965 .

[14]  S. Sinha A Duality Theorem for Nonlinear Programming , 1966 .

[15]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[16]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[17]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[18]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[19]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[20]  M. Hestenes Multiplier and gradient methods , 1969 .

[21]  Gene H. Golub,et al.  The simplex method of linear programming using LU decomposition , 1969, Commun. ACM.

[22]  David L. Kleinman,et al.  An optimal control model of human response part I: Theory and validation , 1970 .

[23]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[24]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[25]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[26]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[27]  R. Fletcher A General Quadratic Programming Algorithm , 1971 .

[28]  John A. Tomlin,et al.  Updated triangular factors of the basis to maintain sparsity in the product form simplex method , 1972, Math. Program..

[29]  H. Crowder,et al.  Linear convergence of the conjugate gradient method , 1972 .

[30]  S. M. Robinson,et al.  A quadratically-convergent algorithm for general nonlinear programming problems , 1972, Math. Program..

[31]  G. Nemhauser,et al.  Integer Programming , 2020 .

[32]  A. I. Cohen Rate of convergence of several conjugate gradient algorithms. , 1972 .

[33]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[34]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[35]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[36]  W. Burmeister Die Konvergenzordnung des Fletcher‐Powell‐Algorithmus , 1973 .

[37]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[38]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[39]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[40]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[41]  G. Schuller On the order of convergence of certain Quasi-Newton-methods , 1974 .

[42]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[43]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[44]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[45]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[46]  M. J. D. Powell,et al.  Some convergence properties of the conjugate gradient method , 1976, Math. Program..

[47]  M. R. Osborne Nonlinear least squares — the Levenberg algorithm revisited , 1976, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[48]  P. Toint On sparse and symmetric matrix updating subject to a linear equation , 1977 .

[49]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[50]  Donald Goldfarb,et al.  A practicable steepest-edge simplex algorithm , 1977, Math. Program..

[51]  J. Stoer On the relation between quadratic termination and convergence properties of minimization algorithms , 1977 .

[52]  H. Walker Quasi-Newton Methods , 1978 .

[53]  N. Maratos,et al.  Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .

[54]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[55]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[56]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[57]  Philip E. Gill,et al.  Numerically stable methods for quadratic programming , 1978, Math. Program..

[58]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[59]  Danny C. Sorensen,et al.  On the use of directions of negative curvature in a modified newton method , 1979, Math. Program..

[60]  M. Powell,et al.  On the Estimation of Sparse Hessian Matrices , 1979 .

[61]  I. Duff,et al.  Direct Solution of Sets of Linear Equations whose Matrix is Sparse, Symmetric and Indefinite , 1979 .

[62]  Donald Goldfarb,et al.  Curvilinear path steplength algorithms for minimization which use directions of negative curvature , 1980, Math. Program..

[63]  K. Ritter On the rate of superlinear convergence of a class of variable metric methods , 1980 .

[64]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[65]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[66]  Claude Lemaréchal,et al.  A view of line-searches , 1981 .

[67]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[68]  Philippe L. Toint,et al.  Towards an efficient sparsity exploiting newton method for minimization , 1981 .

[69]  Philip E. Gill,et al.  Practical optimization , 1981 .

[70]  John E. Dennis,et al.  Algorithm 573: NL2SOL—An Adaptive Nonlinear Least-Squares Algorithm [E4] , 1981, TOMS.

[71]  Jorge J. Moré,et al.  Recent Developments in Algorithms and Software for Trust Region Methods , 1982, ISMP.

[72]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[73]  P. Boggs,et al.  On the Local Convergence of Quasi-Newton Methods for Constrained Optimization , 1982 .

[74]  D. Gabay Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization , 1982 .

[75]  P. Toint,et al.  Local convergence analysis for partitioned quasi-Newton updates , 1982 .

[76]  Andrew R. Conn,et al.  Nonlinear programming via an exact penalty function: Asymptotic analysis , 1982, Math. Program..

[77]  Richard H. Byrd,et al.  A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .

[78]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[79]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[80]  C. Lemaréchal,et al.  The watchdog technique for forcing convergence in algorithms for constrained optimization , 1982 .

[81]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[82]  P. Toint,et al.  Partitioned variable metric updates for large structured optimization problems , 1982 .

[83]  R. Fletcher,et al.  Second order corrections for non-differentiable optimization , 1982 .

[84]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[85]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[86]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[87]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[88]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[89]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[90]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[91]  John D. Ramsdell,et al.  Estimation of Sparse Jacobian Matrices , 1983 .

[92]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[93]  Renpu Ge,et al.  The convergence of variable metric matrices in unconstrained optimization , 1983, Math. Program..

[94]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[95]  Thomas F. Coleman,et al.  Software for estimating sparse Jacobian matrices , 1984, ACM Trans. Math. Softw..

[96]  Richard A. Tapia,et al.  A trust region strategy for nonlinear equality constrained op-timization , 1984 .

[97]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[98]  R. Schnabel,et al.  Tensor Methods for Nonlinear Equations. , 1984 .

[99]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[100]  S. Nash Newton-Type Minimization via the Lanczos Method , 1984 .

[101]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[102]  Thomas F. Coleman,et al.  Estimation of sparse hessian matrices and graph coloring problems , 1982, Math. Program..

[103]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[104]  Thomas F. Coleman,et al.  Software for estimating sparse Hessian matrices , 1985, TOMS.

[105]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[106]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[107]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[108]  L. Watson Numerical linear algebra aspects of globally convergent homotopy methods , 1986 .

[109]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[110]  Simon French,et al.  Finite Algorithms in Optimization and Data Analysis , 1986 .

[111]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[112]  D A Pierre,et al.  Optimization Theory with Applications , 1986 .

[113]  M. Powell Convergence properties of algorithms for nonlinear optimization , 1986 .

[114]  N. Gould On the Accurate Determination of Search Directions for Simple Differentiable Penalty Functions , 1986 .

[115]  Stephen J. Wright,et al.  Optimization Software Guide , 1987 .

[116]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[117]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[118]  P. Boggs,et al.  A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression , 1987 .

[119]  J. Nocedal,et al.  Global Convergence of a Class of Quasi-newton Methods on Convex Problems, Siam Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches, Nonlinear Programming, Edited , 1996 .

[120]  P. Boggs,et al.  ODRPACK Software for Weighted Orthogonal Distance Regression. , 1987 .

[121]  Kunio Tanabe,et al.  Centered newton method for mathematical programming , 1988 .

[122]  R. Fletcher Practical Methods of Optimization , 1988 .

[123]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[124]  Richard H. Byrd,et al.  Approximate solution of the trust region problem by minimization over two-dimensional subspaces , 1988, Math. Program..

[125]  R. Schnabel,et al.  A view of unconstrained optimization , 1989 .

[126]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[127]  Roger Fletcher,et al.  Nonlinear programming and nonsmooth optimization by successive linear programming , 1989, Math. Program..

[128]  N. Gould On the convegence of a sequential penalty function method for constrained minimization , 1989 .

[129]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[130]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[131]  R. Wets,et al.  Stochastic programming , 1989 .

[132]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[133]  Stephen A. Vavasis,et al.  Quadratic Programming is in NP , 1990, Inf. Process. Lett..

[134]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[135]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[136]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[137]  Nicholas I. M. Gould,et al.  Convergence of quasi-Newton matrices generated by the symmetric rank one update , 1991, Math. Program..

[138]  N. Gould An Algorithm for Large-Scale Quadratic Programming , 1991 .

[139]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[140]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[141]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[142]  Jorge Nocedal,et al.  Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.

[143]  Donald Goldfarb,et al.  Steepest-edge simplex algorithms for linear programming , 1992, Math. Program..

[144]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[145]  J. F. Bonnans,et al.  Avoiding the Maratos effect by means of a nonmonotone line search II. Inequality constrained problems—feasible iterates , 1992 .

[146]  Andreas Griewank,et al.  Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .

[147]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[148]  Sanjay Mehrotra,et al.  Solving symmetric indefinite systems in an interior-point method for linear programming , 1993, Math. Program..

[149]  C. Bischof,et al.  Structured second-and higher-order derivatives through univariate Taylor series , 1993 .

[150]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[151]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[152]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[153]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[154]  Richard H. Byrd,et al.  A Theoretical and Experimental Study of the Symmetric Rank-One Update , 1993, SIAM J. Optim..

[155]  Tamar Schlick,et al.  Modified Cholesky Factorizations for Sparse Preconditioners , 1993, SIAM J. Sci. Comput..

[156]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[157]  P. Williamson,et al.  Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. , 1994, Molecular membrane biology.

[158]  Paul T. Boggs,et al.  Convergence Properties of a Class of Rank-two Updates , 1994, SIAM J. Optim..

[159]  S. Granville Optimal reactive dispatch through interior point methods , 1994 .

[160]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[161]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[162]  James V. Burke,et al.  Exposing Constraints , 1994, SIAM J. Optim..

[163]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[164]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[165]  Y. Chen [The change of serum alpha 1-antitrypsin level in patients with spontaneous pneumothorax]. , 1995, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.

[166]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[167]  J. Gondzio HOPDM (version 2.12) — A fast LP solver based on a primal-dual interior point method , 1995 .

[168]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[169]  Roger Fletcher,et al.  An Optimal Positive Definite Update for Sparse Hessian Matrices , 1995, SIAM J. Optim..

[170]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[171]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[172]  A. Griewank Automatic Directional Differentiation of Nonsmooth Composite Functions , 1995 .

[173]  Michael J. Todd,et al.  Potential-reduction methods in mathematical programming , 1997, Math. Program..

[174]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[175]  John K. Reid,et al.  The design of MA48: a code for the direct solution of sparse unsymmetric linear systems of equations , 1996, TOMS.

[176]  Jacek Gondzio,et al.  Implementation of Interior Point Methods for Large Scale Linear Programming , 1996 .

[177]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[178]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[179]  Nicholas I. M. Gould,et al.  Numerical experiments with the LANCELOT package (release A) for large-scale nonlinear optimization , 1996, Math. Program..

[180]  Richard H. Byrd,et al.  Analysis of a Symmetric Rank-One Trust Region Method , 1996, SIAM J. Optim..

[181]  Christian Bischof,et al.  Adifor 2.0: automatic differentiation of Fortran 77 programs , 1996 .

[182]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[183]  J. Grimm,et al.  Optimal Time and Minimum Space-Time Product for Reversing a Certain Class of Programs , 1996 .

[184]  D. Gay,et al.  More AD of Nonlinear AMPL Models: Computing Hessian Information and Exploiting Partial Separability † , 1996 .

[185]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[186]  C. Bischof,et al.  Efficient computation of gradients and Jacobians by dynamic exploitation of sparsity in automatic differentiation , 1996 .

[187]  Stephen J. Wright,et al.  Applying new optimization algorithms to more predictive control , 1996 .

[188]  R. Sundaram A First Course in Optimization Theory , 1996 .

[189]  R. Fletcher,et al.  Computing Sparse Hessian and Jacobian Approximations with Optimal Hereditary Properties , 1997 .

[190]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[191]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[192]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[193]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[194]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[195]  Christian H. Bischof,et al.  ADIC: an extensible automatic differentiation tool for ANSI‐C , 1997, Softw. Pract. Exp..

[196]  Katya Scheinberg,et al.  On the convergence of derivative-free methods for unconstrained optimization , 1997 .

[197]  Christian H. Bischof,et al.  Computing Gradients in Large-Scale Optimization Using Automatic Differentiation , 1997, INFORMS J. Comput..

[198]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[199]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[200]  Andreas Griewank,et al.  Circumventing Storage Limitations in Variational Data Assimilation Studies , 1997, SIAM J. Sci. Comput..

[201]  Jan Vlcek,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems , 1998, Numer. Linear Algebra Appl..

[202]  Dafydd Gibbon,et al.  1 User’s guide , 1998 .

[203]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[204]  S. H. Cheng,et al.  A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..

[205]  Yin Zhang,et al.  Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .

[206]  Mohamed A. H. El-Sayed,et al.  Artificial neural network for reactive power optimization , 1998, Neurocomputing.

[207]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[208]  Stephen J. Wright Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming , 1999, SIAM J. Optim..

[209]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[210]  Stephen J. Wright,et al.  Fundamentals of Unconstrained Optimization , 1999 .

[211]  C. T. Kelley,et al.  Detection and Remediation of Stagnation in the Nelder--Mead Algorithm Using a Sufficient Decrease Condition , 1999, SIAM J. Optim..

[212]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[213]  Chih-Jen Lin,et al.  Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..

[214]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[215]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[216]  Stephen J. Wright,et al.  PCx: an interior-point code for linear programming , 1999 .

[217]  C. T. Kelley,et al.  Superlinear Convergence and Implicit Filtering , 1999, SIAM J. Optim..

[218]  Ya-Xiang Yuan,et al.  On the truncated conjugate gradient method , 2000, Math. Program..

[219]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[220]  Jorge Nocedal,et al.  Automatic Preconditioning by Limited Memory Quasi-Newton Updating , 1999, SIAM J. Optim..

[221]  Lorenz T. Biegler,et al.  Failure of global convergence for a class of interior point methods for nonlinear programming , 2000, Math. Program..

[222]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[223]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[224]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[225]  Roger Fletcher,et al.  Stable reduced Hessian updates for indefinite quadratic programming , 2000, Math. Program..

[226]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[227]  Tamara G. Kolda,et al.  Asynchronous Parallel Pattern Search for Nonlinear Optimization , 2001, SIAM J. Sci. Comput..

[228]  P. Toint,et al.  An iterative working-set method for large-scale nonconvex quadratic programming , 2002 .

[229]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[230]  José Mario Martínez,et al.  Algorithm 813: SPG—Software for Convex-Constrained Optimization , 2001, TOMS.

[231]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[232]  Michael L. Overton,et al.  Numerical Computing with IEEE Floating Point Arithmetic , 2001 .

[233]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .