Solar ultraviolet transfer in the Martian atmosphere: biological and geological implications

Abstract The Martian environment has an exceedingly strong component of damaging solar far-ultraviolet radiation, including most of the UV-C range (190– 280 nm ) because of the lack of an effective ozone shield. Two-stream radiative transfer modelling, including particulate aerosol content and surface albedo, indicates that the present abundance of SO2 does not provide any surface protection of the UV radiation. However, larger abundances of sulfur dioxide (mixing ratio, q, comprised between 10−5 and 10−4) introduced in the present 6 mbar Martian atmosphere can partially protect the surface from the harmful solar UV radiation. Furthermore, Mie backscattering by dust and/or aerosols noticeably reduces the harmful solar UV radiation. Regardless of the ozone concentration, the required dust content for almost blocking this damaging radiation is such that the optical depth at 550 nm is τ=0.8–1.5 (for a given solar zenithal angle (SZA) of 38°), typical of a turbid atmosphere, and τ⩾1.6 more characteristic of dust storms. The required mass of SO2 (i.e. 1014– 10 15 gr ) and/or ashes could have been easily provided by volcanic activity on Mars several times along the entire geologic history of the planet. In terms of DNA protection, volcanic ashes and SO2 considerably reduced levels of UV radiation lead to a biological dose comparable to the existing on the present Earth, together with the possibility of a non-deterioration of the environment due to UV photo-oxidation. Therefore, preserving life forms on Mars surface at any past epoch cannot be completely ruled out.

[1]  Ralph A. Kahn,et al.  Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data , 1977 .

[2]  C. McKay,et al.  A model for the evolution of CO2 on Mars. , 1994, Icarus.

[3]  A. McEwen,et al.  Voluminous volcanism on early Mars revealed in Valles Marineris , 1999, Nature.

[4]  Boucher Np,et al.  An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean , 1996 .

[5]  J. Plescia An Assessment of Volatile Release from Recent Volcanism in Elysium, Mars , 1993 .

[6]  D. Muhleman,et al.  Mapping Mars water vapor with the Very Large Array , 1992 .

[7]  F. Volz Economical Multispectral Sun Photometer for Measurements of Aerosol Extinction from 0.44 mum to 1.6 mum and Precipitable Water. , 1974, Applied optics.

[8]  A. G. GREENHILL Graphics; or, the Art of Calculation by drawing Lines, applied especially to Mechanical Engineering. , 1889 .

[9]  G. D. Robinson Absorption of solar radiation by atmospheric aerosol, as revealed by measurements at the ground , 1962 .

[10]  W. L. Davis,et al.  Duration of liquid water habitats on early Mars. , 1991, Icarus.

[11]  R. Setlow,et al.  The action of radiation on dry desoxyribonucleic acid. , 1954, Biochimica et biophysica acta.

[12]  A. McEwen,et al.  Terrestrial analogs and thermal models for Martian flood lavas , 1999 .

[13]  V E Cachorro,et al.  Determination of the Angstrom turbidity parameters. , 1987, Applied optics.

[14]  D. Karentz,et al.  CELL SURVIVAL CHARACTERISTICS AND MOLECULAR RESPONSES OF ANTARCTIC PHYTOPLANKTON TO ULTRAVIOLET‐B RADIATION 1 , 1991 .

[15]  Robert C. Worrest,et al.  Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life , 1986, NATO ASI Series.

[16]  Esposito,et al.  The structure of the upper atmosphere of mars: In situ accelerometer measurements from mars global surveyor , 1998, Science.

[17]  Thomas F. Eck,et al.  Temporal and spatial variability of aerosol optical depth in the Sahel region in relation to vegetation remote sensing , 1991 .

[18]  Knut Stamnes,et al.  The theory of multiple scattering of radiation in plane parallel atmospheres , 1986 .

[19]  R. Setlow The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[21]  Arthur L. Lane,et al.  A compilation of the absorption cross-sections of SO2 from 106 to 403 nm , 1993 .

[22]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[23]  A. Kliore,et al.  The Mariner 1969 occultation measurements of the upper atmosphere of Mars , 1970 .

[24]  T. Gerlach,et al.  Volatile budget of Kilauea volcano , 1985, Nature.

[25]  A. Ångström,et al.  Techniques of Determinig the Turbidity of the Atmosphere , 1961 .

[26]  R Dulbecco,et al.  Frontiers of Life , 2001 .

[27]  R. Rodrigo,et al.  A nonsteady one‐dimensional theoretical model of Mars' neutral atmospheric composition between 30 and 200 km , 1990 .

[28]  K. Baker,et al.  Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. , 1992, Science.

[29]  T. Thordarson,et al.  Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland , 1996 .

[30]  Robert M. Haberle,et al.  Simulations of the general circulation of the Martian atmosphere: 1. Polar processes , 1990 .

[31]  B. Lindner Ozone heating in the martian atmosphere , 1991 .

[32]  D. W. Davies,et al.  Mars: Water vapor observations from the Viking orbiters , 1977 .

[33]  Alexander Smirnov,et al.  Comparisons of the TOMS aerosol index with Sun‐photometer aerosol optical thickness: Results and applications , 1999 .

[34]  G. Anderson,et al.  Mariner 9 Ultraviolet Spectrometer Experiment: Seasonal Variation of Ozone on Mars , 1973, Science.

[35]  M. Tevini UV-B radiation and ozone depletion : effects on humans, animals, plants, microorganisms, and materials , 1993 .

[36]  C. Cockell,et al.  The ultraviolet environment of Mars: biological implications past, present, and future. , 2000, Icarus.

[37]  M. Iqbal An introduction to solar radiation , 1983 .

[38]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[39]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[40]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[41]  H. J. Moore,et al.  Atlas of volcanic landforms on Mars , 1994 .

[42]  S. Atreya,et al.  Solar radiation incident on the Martian surface , 1979, Journal of Molecular Evolution.

[43]  Paul Harteck,et al.  Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 between 1850 and 4000 A , 1963 .

[44]  S. Madronich The Atmosphere and UV-B Radiation at Ground Level , 1993 .

[45]  Stephan D. Flint,et al.  Action Spectra and Their Key Role in Assessing Biological Consequences of Solar UV-B Radiation Change , 1986 .

[46]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[47]  Donald E. Anderson,et al.  Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Analysis of hydrogen Lyman-alpha data , 1971 .

[48]  W. Harm Biological effects of ultraviolet radiation , 1980 .

[49]  C. Y. Robert Wu,et al.  Measurements of High-, Room-, and Low-Temperature Photoabsorption Cross Sections of SO2 in the 2080- to 2950-Å Region, with Application to Io , 2000 .

[50]  C. Barth,et al.  Ozone and the polar hood of Mars , 1974 .

[51]  M. P. Utrillas,et al.  The parameterisation of the atmospheric aerosol optical depth using the Ångström power law , 1998 .

[52]  C. Weitz,et al.  Theoretical modeling of eruption plumes on Mars under current and past climates , 2001 .

[53]  G. Fiocco Mesospheric Models and Related Experiments , 1971 .

[54]  A. Kliore,et al.  The atmosphere of Mars from Mariner 9 radio occultation measurements. , 1972 .

[55]  J. Kasting,et al.  CO2 condensation and the climate of early Mars. , 1991, Icarus.

[56]  V. A. Krasnopolsky,et al.  Photochemistry of the Martian Atmosphere (Mean Conditions) , 1993 .

[57]  K. I. Kondratʹev Radiation in the atmosphere , 1969 .

[58]  Michel Combes,et al.  The atmospheric composition of Mars: ISM and ground-based observational data. , 1991 .

[59]  W. Passchier,et al.  Human exposure to ultraviolet radiation : risks and regulations : proceedings of a seminar held in Amsterdam, 23-25 March 1987 , 1987 .

[60]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[61]  T. Blackburn,et al.  Viking gas exchange reaction: Simulation on UV‐irradiated manganese dioxide substrate , 1979 .

[62]  M. McElroy,et al.  Photochemistry and evolution of Mars' atmosphere: A Viking perspective , 1977 .

[63]  Y. Yung,et al.  CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation. , 1997, Icarus.

[64]  Mark H. Thiemens,et al.  Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites , 2000, Nature.

[65]  M. Settle Formation and deposition of volcanic sulfate aerosols on Mars , 1979 .

[66]  W. Hartmann,et al.  Elysium Planitia lava flows: Crater count chronology and geological implications , 2000 .

[67]  T. Ackerman,et al.  Response of Earth's atmosphere to increases in solar flux and implications for loss of water from Venus. , 1984, Icarus.

[68]  F. Volz,et al.  Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlängenabhängigkeit der Dunsttrübung , 1959 .

[69]  T. Thordarson,et al.  Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA , 1996 .

[70]  L. Rothschild,et al.  The Effects of UV Radiation A and B on Diurnal Variation in Photosynthesis in Three Taxonomically and Ecologically Diverse Microbial Mats , 1999, Photochemistry and photobiology.

[71]  J. Joseph,et al.  The delta-Eddington approximation for radiative flux transfer , 1976 .

[72]  M. S. Matthews,et al.  Resources of near-Earth space , 1993 .

[73]  D. Miller,et al.  New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgja eruption, Iceland , 2001 .

[74]  R. Greenberg,et al.  Viscosity and Mass Transport in Keplerian Disks with Radial Gradients in Surface Density , 1988 .