The analysis of cyclic circuits with Boolean satisfiability

The accepted wisdom is that combinational circuits must have acyclic (i.e., loop-free or feed-forward) topologies. And yet simple examples suggest that this need not be so. In previous work, we advocated the design of cyclic combinational circuits (i.e., circuits with loops or feedback paths). We proposed a synthesis methodology and demonstrated that it produces significant improvements in area and in delay. The analysis method that we used to validate cyclic circuits was based on binary decision diagrams. In this paper, we propose a much more efficient technique for analysis based on Boolean satisfiability (SAT).

[1]  P. R. Stephan,et al.  SIS : A System for Sequential Circuit Synthesis , 1992 .

[2]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[3]  Michael Yoeli,et al.  Application of Ternary Algebra to the Study of Static Hazards , 1964, JACM.

[4]  Robert P. Kurshan,et al.  An Analysis of SAT-Based Model Checking Techniques in an Industrial Environment , 2005, CHARME.

[5]  Marc D. Riedel,et al.  Cyclic combinational circuits , 2004 .

[6]  L. Stok,et al.  False loops through resource sharing (logic CAD) , 1992, 1992 IEEE/ACM International Conference on Computer-Aided Design.

[7]  Randy H. Katz,et al.  Contemporary Logic Design , 2004 .

[8]  D. Huffman COMBINATIONAL CIRCUITS WITH FEEDBACK , 1971 .

[9]  Prabhat Mishra,et al.  Test generation using SAT-based bounded model checking for validation of pipelined processors , 2006, GLSVLSI '06.

[10]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[11]  A. Sangiovanni-Vincentelli,et al.  Formal analysis of synchronous circuits , 1996 .

[12]  Tracy Larrabee,et al.  Test pattern generation using Boolean satisfiability , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Stephen A. Edwards,et al.  Making cyclic circuits acyclic , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[14]  William H. Kautz,et al.  The Necessity of Closed Circuit Loops in Minimal Combinational Circuits , 1970, IEEE Transactions on Computers.

[15]  Edward B. Eichelberger,et al.  Hazard Detection in Combinational and Sequential Switching Circuits , 1965, IBM J. Res. Dev..

[16]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002 .

[17]  Niklas Een,et al.  MiniSat v1.13 - A SAT Solver with Conflict-Clause Minimization , 2005 .

[18]  Leon Stok,et al.  False loops through resource sharing , 1992, ICCAD '92.

[19]  Janusz A. Brzozowski,et al.  Definite Asynchronous Sequential Circuits , 1968, IEEE Transactions on Computers.

[20]  Randal E. Bryant,et al.  Boolean Analysis of MOS Circuits , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Sharad Malik Analysis of cyclic combinational circuits , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  Jehoshua Bruck,et al.  The synthesis of cyclic combinational circuits , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[23]  Ronald L. Rivest The Necessity of Feedback in Minimal Monotone Combinational Circuits , 1977, IEEE Transactions on Computers.

[24]  John F. Wakerly,et al.  Digital design - principles and practices , 1990, Prentice Hall Series in computer engineering.

[25]  Sharad Malik,et al.  Combining strengths of circuit-based and CNF-based algorithms for a high-performance SAT solver , 2002, DAC '02.