Empirical analysis of self-adaptive differential evolution

Differential evolution (DE) is generally considered as a reliable, accurate, robust and fast optimization technique. DE has been successfully applied to solve a wide range of numerical optimization problems. However, the user is required to set the values of the control parameters of DE for each problem. Such parameter tuning is a time consuming task. In this paper, a self-adaptive DE (SDE) algorithm which eliminates the need for manual tuning of control parameters is empirically analyzed. The performance of SDE is investigated and compared with other well-known approaches. The experiments conducted show that SDE generally outperform other DE algorithms in all the benchmark functions. Moreover, the performance of SDE using the ring neighborhood topology is investigated.

[1]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[2]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[5]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[6]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[7]  Zhenya He,et al.  Swarm directions embedded in fast evolutionary programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[8]  Janez Brest,et al.  Differential evolution for multiobjective optimization with self adaptation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[9]  An Overview of Evolutionary , .

[10]  Andries Petrus Engelbrecht,et al.  Self-adaptive Differential Evolution , 2005, CIS.

[11]  Stefan Janaqi,et al.  Generalization of the strategies in differential evolution , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[12]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[13]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[14]  D. Karaboga,et al.  A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm , 2004 .

[15]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  Hussein A. Abbass,et al.  A Memetic Pareto Evolutionary Approach to Artificial Neural Networks , 2001, Australian Joint Conference on Artificial Intelligence.

[17]  Jacek M. Zurada,et al.  Computational Intelligence: Imitating Life , 1994 .

[18]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[19]  Andries Petrus Engelbrecht,et al.  Differential evolution methods for unsupervised image classification , 2005, 2005 IEEE Congress on Evolutionary Computation.

[20]  Rainer Storn,et al.  Differential Evolution Design of an IIR-Filter with Requirements for Magnitude and Group Delay , 1995 .

[21]  Jacques Riget,et al.  A Diversity-Guided Particle Swarm Optimizer - the ARPSO , 2002 .

[22]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[23]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[24]  Rakesh Angira,et al.  OPTIMIZATION OF NON-LINEAR FUNCTIONS USING EVOLUTIONARY COMPUTATION , 2002 .

[25]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[26]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[27]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[28]  Gary B. Fogel,et al.  Noisy optimization problems - a particular challenge for differential evolution? , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[29]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[30]  Sandra Paterlini,et al.  High performance clustering with differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[31]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[32]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[33]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[34]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[35]  Chilukuri K. Mohan,et al.  Linkage crossover operator for genetic algorithms , 1999 .

[36]  B. Babu,et al.  Differential evolution for multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..