Fast, Linear Time Hierarchical Clustering using the Baire Metric

The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. In this work we evaluate empirically this new approach to hierarchical clustering. We compare hierarchical clustering based on the Baire metric with (i) agglomerative hierarchical clustering, in terms of algorithm properties; (ii) generalized ultrametrics, in terms of definition; and (iii) fast clustering through k-means partitioning, in terms of quality of results. For the latter, we carry out an in depth astronomical study. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more costly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we use clusterwise regression for this.

[1]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[2]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[3]  Alberto Fernandez-Soto,et al.  On the Compared Accuracy and Reliability of Spectroscopic and Photometric Redshift Measurements , 2000, astro-ph/0007447.

[4]  Melvin F. Janowitz,et al.  Ordinal and Relational Clustering , 2010, Interdisciplinary Mathematical Sciences.

[5]  G. Longo,et al.  The use of neural networks to probe the structure of the nearby universe , 2007, astro-ph/0701137.

[6]  Fionn Murtagh,et al.  Multidimensional clustering algorithms , 1985 .

[7]  Fionn Murtagh,et al.  Evaluation of Hierarchies based on the Longest Common Prefix, or Baire, Metric , 2007 .

[8]  Fionn Murtagh,et al.  Identifying the ultrametricity of time series , 2005 .

[9]  F. Murtagh Symmetry in data mining and analysis: A unifying view based on hierarchy , 2008, 0805.2744.

[10]  A. C. M. van Rooij,et al.  Non-Archimedean functional analysis , 1978 .

[11]  Fionn Murtagh,et al.  Hierarchical Clustering of Massive, High Dimensional Data Sets by Exploiting Ultrametric Embedding , 2008, SIAM J. Sci. Comput..

[12]  M. F. Janowitz,et al.  An Order Theoretic Model for Cluster Analysis , 1978 .

[13]  Pascal Hitzler,et al.  Generalized Distance Functions in the Theory of Computation , 2010, Comput. J..

[14]  Antonino Staiano,et al.  Mining the Structure of the Nearby Universe , 2007 .

[15]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[16]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[17]  Pascal Hitzler,et al.  The Fixed-Point Theorems of Priess-Crampe and Ribenboim in Logic Programming , 2002 .

[18]  M. Paolillo,et al.  Steps toward a classifier for the Virtual Observatory. I. Classifying the SDSS photometric archive. , 2007 .

[19]  Fionn Murtagh,et al.  On Ultrametricity, Data Coding, and Computation , 2004, J. Classif..

[20]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[21]  Pedro Albornoz,et al.  Search and retrieval in massive data collections , 2010 .

[22]  Hernán Astudillo,et al.  Clustering and semantics preservation in cultural heritage information spaces , 2010, RIAO.

[23]  Stephen Kent Sloan Digital Sky Survey , 1994 .

[24]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[25]  Jaromir Antoch,et al.  COMPSTAT 2004 — Proceedings in Computational Statistics , 2004 .

[26]  Patrick Erik Bradley Degenerating Families of Dendrograms , 2008, J. Classif..

[27]  D. Raffaele,et al.  Mining the SDSS archive. I. Photometric redshifts in the nearby universe , 2007, astro-ph/0703108.

[28]  Patrick Erik Bradley,et al.  Mumford Dendrograms , 2007, Comput. J..

[29]  Wolfgang Gaul,et al.  "Classification, Clustering, and Data Mining Applications" , 2004 .

[30]  David Banks,et al.  Classification, clustering, and data mining applications : proceedings of the meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology, Chicago, 15-18 July 2004 , 2004 .