Three-dimensional analysis of the coupled thermo-piezoelectro-mechanical behaviour of multilayered plates using the differential quadrature technique

This paper investigates the behaviour of multilayered composite plates subject to thermo-piezoelectric-mechanical loading. The analysis is performed using the three-dimensional equations of thermo-piezoelasticity and the differential quadrature (DQ) numerical technique. Solutions to the thermo-piezoelectric laminated plates are made possible with the development and implementation of a DQ layerwise modelling technique. The formulation allows different boundary conditions to be imposed at the edges of the plate. Numerical results for different example plate problems are presented, and the effects of the thermo-piezoelasticity and boundary conditions of these problems are investigated. The DQ model predictions are validated with existing results as the comparison reveals good agreement between two.

[1]  K. M. Liew,et al.  Dynamic Characteristics of Elastic Bonding in Composite Laminates: A Free Vibration Study , 2003 .

[2]  K. M. Liew,et al.  Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations , 1997 .

[3]  K. M. Liew,et al.  Three-Dimensional Vibration Analysis of Rectangular Plates Based on Differential Quadrature Method , 1999 .

[4]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[5]  K. M. Liew,et al.  Differential quadrature method for thick symmetric cross-ply laminates with first-order shear flexibility , 1996 .

[6]  H. F. Tiersten,et al.  On the nonlinear equations of thermo-electroelasticity , 1971 .

[7]  M. C. Ray,et al.  Exact analysis of coupled electroelastic behaviour of a piezoelectric plate under cylindrical bending , 1992 .

[8]  W. Nowacki,et al.  SOME GENERAL THEOREMS OF THERMOPIEZOELECTRICITY , 1978 .

[9]  K. M. Liew,et al.  Analysis of moderately thick circular plates using differential quadrature method , 1997 .

[10]  A. L. Florence,et al.  Dynamic problems of thermoelasticity , 1975 .

[11]  Paul R. Heyliger,et al.  Static behavior of laminated elastic/piezoelectric plates , 1994 .

[12]  K. M. Liew,et al.  Static Analysis of Reissner-Mindlin Plates by Differential Quadrature Element Method , 1998 .

[13]  R. D. Mindlin Equations of high frequency vibrations of thermopiezoelectric crystal plates , 1974 .

[14]  Paul R. Heyliger,et al.  Exact Solutions for Simply Supported Laminated Piezoelectric Plates , 1997 .

[15]  K. Liew,et al.  Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates , 1998 .

[16]  K. M. Liew,et al.  A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates , 1997 .

[17]  K. M. Liew,et al.  Comparative accuracy of DQ and HDQ methods for three-dimensional vibration analysis of rectangular plates , 1999 .

[18]  K. M. Liew,et al.  Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin plates having discontinuities , 1999 .

[19]  K. M. Liew,et al.  Three‐dimensional theory of elasticity for free vibration analysis of composite laminates via layerwise differential quadrature modelling , 2003 .

[20]  K. M. Liew,et al.  Free vibration analysis of Mindlin sector plates : numerical solutions by differential quadrature method , 1999 .

[21]  C. Bert,et al.  Differential Quadrature Method in Computational Mechanics: A Review , 1996 .

[22]  Santosh Kapuria,et al.  Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending , 1996 .

[23]  K. M. Liew,et al.  Differential quadrature method for Mindlin plates on Winkler foundations , 1996 .

[24]  K. Liew,et al.  Three-dimensional static solutions of rectangular plates by variant differential quadrature method , 2001 .

[25]  K. M. Liew,et al.  DIFFERENTIAL QUADRATURE METHOD FOR VIBRATION ANALYSIS OF SHEAR DEFORMABLE ANNULAR SECTOR PLATES , 2000 .

[26]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[27]  K. M. Liew,et al.  A differential quadrature procedure for three-dimensional buckling analysis of rectangular plates , 1999 .

[28]  K. M. Liew,et al.  Differential cubature method for static solutions of arbitrarily shaped thick plates , 1998 .

[29]  Romesh C. Batra,et al.  Cylindrical Bending of Laminated Plates with Distributed and Segmented Piezoelectric Actuators/Sensors , 2000 .

[30]  K. M. Liew,et al.  An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates , 1997 .

[31]  K. M. Liew,et al.  Three-dimensional elasticity solutions to some orthotropic plate problems , 1999 .

[32]  B. Samanta,et al.  Exact solution for static analysis of an intelligent structure under cylindrical bending , 1993 .

[33]  A. Noor,et al.  Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates , 1995 .

[34]  A. Rao,et al.  Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates , 1970 .

[35]  K. M. Liew,et al.  Differential quadrature–layerwise modeling technique for three-dimensional analysis of cross-ply laminated plates of various edge-supports , 2002 .

[36]  Romesh C. Batra,et al.  GENERALIZED PLANE STRAIN THERMOPIEZOELECTRIC ANALYSIS OF MULTILAYERED PLATES , 2003 .