On a class of finite symmetric graphs

Let @C be a G-symmetric graph, and let B be a nontrivial G-invariant partition of the vertex set of @C. This paper aims to characterize (@C,G) under the conditions that the quotient graph @C"B is (G,2)-arc transitive and the induced subgraph between two adjacent blocks is 2@?K"2 or K"2","2. The results answer two questions about the relationship between @C and @C"B for this class of graphs.

[1]  Sanming Zhou A Local Analysis of Imprimitive Symmetric Graphs , 2005 .

[2]  Dragan Marusic,et al.  On 2-arc-transitivity of Cayley graphs , 2003, J. Comb. Theory, Ser. B.

[3]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Sanming Zhou,et al.  A class of finite symmetric graphs with 2-arc transitive quotients , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Sanming Zhou,et al.  Imprimitive symmetric graphs, 3-arc graphs and 1-designs , 2002, Discret. Math..

[7]  Sanming Zhou,et al.  Constructing a Class of Symmetric Graphs , 2002, Eur. J. Comb..

[8]  C. Praeger Finite Transitive Permutation Groups and Bipartite Vertex-Transitive Graphs , 2003 .

[9]  Sanming Zhou Almost Covers Of 2-Arc Transitive Graphs , 2004, Comb..

[10]  Sanming Zhou,et al.  Finite symmetric graphs with two-arc transitive quotients , 2005, J. Comb. Theory, Ser. B.

[11]  Gary L. Miller,et al.  Regular groups of automorphisms of cubic graphs , 1980, J. Comb. Theory, Ser. B.

[12]  Sanming Zhou,et al.  Cross Ratio Graphs , 2001 .

[13]  Sanming Zhou,et al.  Finite symmetric graphs with two-arc transitive quotients , 2005, J. Comb. Theory, Ser. B.

[14]  H. Weyl Permutation Groups , 2022 .

[15]  Cheryl E. Praeger,et al.  A Geometrical Approach to Imprimitive Graphs , 1995 .

[16]  Norman L. Biggs A new 5-arc-transitive cubic graph , 1982, J. Graph Theory.

[17]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[18]  Sanming Zhou Symmetric Graphs and Flag Graphs , 2003 .

[19]  Cai Heng Li,et al.  The Finite Primitive Permutation Groups Containing an Abelian Regular Subgroup , 2003 .

[20]  Marston D. E. Conder,et al.  Automorphism groups of symmetric graphs of valency 3 , 1989, J. Comb. Theory, Ser. B.

[21]  Sanming Zhou,et al.  Finite symmetric graphs with two-arc transitive quotients II , 2007 .