Relative entropy optimization and its applications

In this expository article, we study optimization problems specified via linear and relative entropy inequalities. Such relative entropy programs (REPs) are convex optimization problems as the relative entropy function is jointly convex with respect to both its arguments. Prominent families of convex programs such as geometric programs (GPs), second-order cone programs, and entropy maximization problems are special cases of REPs, although REPs are more general than these classes of problems. We provide solutions based on REPs to a range of problems such as permanent maximization, robust optimization formulations of GPs, and hitting-time estimation in dynamical systems. We survey previous approaches to some of these problems and the limitations of those methods, and we highlight the more powerful generalizations afforded by REPs. We conclude with a discussion of quantum analogs of the relative entropy function, including a review of the similarities and distinctions with respect to the classical case. We also describe a stylized application of quantum relative entropy optimization that exploits the joint convexity of the quantum relative entropy function.

[1]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[2]  M. Gomes-Ruggiero,et al.  Quantum state tomography with incomplete data: Maximum entropy and variational quantum tomography , 2013, 1306.0467.

[3]  Parikshit Shah,et al.  Relative Entropy Relaxations for Signomial Optimization , 2014, SIAM J. Optim..

[4]  H.,et al.  Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture , 2022 .

[5]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[6]  George J. Pappas,et al.  Data-Driven Allocation of Vaccines for Controlling Epidemic Outbreaks , 2014, ArXiv.

[7]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[8]  Stephen P. Boyd,et al.  Digital Circuit Optimization via Geometric Programming , 2005, Oper. Res..

[9]  Henry Wolkowicz,et al.  A note on maximizing the permanent of a positive definite hermitian matrix, given the eigenvalues ∗ , 1986 .

[10]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[11]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[12]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[13]  Peter W. Shor Capacities of quantum channels and how to find them , 2003, Math. Program..

[14]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[15]  Arkadi Nemirovski,et al.  On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..

[16]  Rekha R. Thomas,et al.  Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..

[17]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[18]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[19]  Parikshit Shah,et al.  Conic geometric programming , 2013, 2014 48th Annual Conference on Information Sciences and Systems (CISS).

[20]  G. P. Erorychev Proof of the van der Waerden conjecture for permanents , 1981 .

[21]  C. Thompson Inequality with Applications in Statistical Mechanics , 1965 .

[22]  K. Kraus,et al.  Operations and measurements. II , 1970 .

[23]  Inderjit S. Dhillon,et al.  Low-Rank Kernel Learning with Bregman Matrix Divergences , 2009, J. Mach. Learn. Res..

[24]  Aleksander Muc,et al.  Optimal design of engineering structures , 2017, 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

[25]  Gene Woolsey,et al.  OR Practice - Solving Complex Chemical Equilibria Using a Geometric-Programming Based Technique , 1986, Oper. Res..

[26]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[27]  George J. Pappas,et al.  Data-Driven Network Resource Allocation for Controlling Spreading Processes , 2015, IEEE Transactions on Network Science and Engineering.

[28]  D. Cox The Regression Analysis of Binary Sequences , 1958 .

[29]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[30]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[31]  Mung Chiang,et al.  Geometric Programming for Communication Systems , 2005, Found. Trends Commun. Inf. Theory.

[32]  Stephen P. Boyd,et al.  Geometric programming duals of channel capacity and rate distortion , 2004, IEEE Transactions on Information Theory.

[33]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[34]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[35]  Stephen P. Boyd,et al.  A tutorial on geometric programming , 2007, Optimization and Engineering.

[36]  Alexander I. Barvinok,et al.  Computing Mixed Discriminants, Mixed Volumes, and Permanents , 1997, Discret. Comput. Geom..

[37]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[38]  S. Golden LOWER BOUNDS FOR THE HELMHOLTZ FUNCTION , 1965 .

[39]  Gary A. Kochenberger,et al.  Entropy Maximization and Geometric Programming , 1977 .

[40]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[41]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[42]  Leonid Gurvits,et al.  Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all , 2007, Electron. J. Comb..

[43]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[44]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[45]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[46]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[47]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[48]  Ulrich Betke,et al.  Mixed volumes of polytopes , 1992 .

[49]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[50]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[51]  François Glineur,et al.  An extended conic formulation for geometric optimization , 2000 .

[52]  George J. Pappas,et al.  Geometric programming relaxations for linear system reachability , 2004, Proceedings of the 2004 American Control Conference.

[53]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[54]  Charles R. Johnson,et al.  The maximum permanent of a 3-by-3 positive semidefinite matrix, given the eigenvalues , 1989 .

[55]  Alexander Potchinkov,et al.  The design of FIR filters in the complex plane by convex optimization , 1995, Signal Process..

[56]  Clarence Zener,et al.  Geometric Programming : Theory and Application , 1967 .

[57]  Alex Samorodnitsky,et al.  A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..

[58]  Stephen P. Boyd,et al.  Tractable approximate robust geometric programming , 2007, Optimization and Engineering.

[59]  Thomas R. Jefferson,et al.  Trace optimization problems and generalized geometric programming , 1977 .

[60]  Ravindra B. Bapat,et al.  Order statistics for nonidentically distributed variables and permanents , 1989 .

[61]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .