Molecular phylogeny of icefish Salangidae based on complete mtDNA cytochrome b sequences, with comments on estuarine fish evolution

Phylogenetic relationships among 15 species in the family Salangidae were constructed based on the complete cytochrome b sequence (1141 bp). We confirmed the monophyly of the family Salangidae and defined four primitive lineages within this family: (I) Protosalanx, Neosalanx anderssoni, Neosalanx tangkahkeii, and Neosalanx argentea; (II) Neosalanx reganius, Neosalanx jordani, Neosalanx oligodontis, and Neosalanx sp.; (III) Hemisalanx, Salanx, Leucosoma, and Salangichthys ishikawae; and (IV) Salangichthys microdon. A major finding of our study is the key basal placement of Sg. microdon. According to the tentative estimation, the divergence of the four lineages appears to have been initiated in the early Miocene (21 Mya), with most speciation events occurring 1.05–9.90 Mya. Taxonomic revisions on subfamilial, generic, and specific levels were carried out based on phylogenetic relationships and genetic distance, taking into account some key morphological characters. The speciation mechanism in Salangidae is also discussed, and the evidence shows that geographical isolation, water mass, as well as some ecological factors, may not always play important roles in the speciation of temperate estuarine fish. In the most cases, sympatric salangids are not monophyletic, indicating that their coexistence reflects secondary contact rather than sympatric speciation. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 327–342.

[1]  A. Wilson,et al.  Evolution of the cytochromeb gene of mammals , 1991, Journal of Molecular Evolution.

[2]  E. Taylor,et al.  Mitochondrial DNA variation in rainbow trout (Oncorhynchus mykiss) across its native range: testing biogeographical hypotheses and their relevance to conservation , 2000, Molecular ecology.

[3]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[4]  L. Bernatchez Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt Osmerus mordax and their reproductive isolation in the St Lawrence River estuary (Quebec, Canada) , 1997 .

[5]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.

[6]  Zhang Yu-ling A Taxonomic study on the Chinese Icefishes of the Genus Neosalanx (Pisces:Salangidae),With Description of A New Species From the Lake Taihu , 1987 .

[7]  Robert S. R. Williams,et al.  New Paleocene genus and species of smelt (Teleostei: Osmeridae) from freshwater deposits of the Paskapoo Formation, Alberta, Canada, and comments on osmerid phylogeny , 1991 .

[8]  M. Miya,et al.  Speciation in the open ocean , 1997, Nature.

[9]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[10]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[11]  W. Fink,et al.  Relationships of the stomiiform fishes (Teleostei), with a description of Diplophos , 1982 .

[12]  K. Saitoh,et al.  Tissue Preservation and Total DNA Extraction form Fish Stored at Ambient Temperature Using Buffers Containing High Concentration of Urea , 1996 .

[13]  S. McKay,et al.  Phylogeny of Pacific salmon and trout based on growth hormone type-2 and mitochondrial NADH dehydrogenase subunit 3 DNA sequences , 1996 .

[14]  D. Wake,et al.  Miniaturization of Body Size: Organismal Consequences and Evolutionary Significance , 1993 .

[15]  R. McDowall,et al.  Phylogenetic placement of retropinnid fishes: data set incongruence can be reduced by using asymmetric character state transformation costs. , 2002, Systematic biology.

[16]  M A Newton,et al.  Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods , 1999, Biometrics.

[17]  G. D. Johnson,et al.  Chapter 12 – Relationships of Lower Euteleostean Fishes , 1996 .

[18]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[19]  W. A. Gosline Contributions toward a classification of modern isospondylous fishes , 1960 .

[20]  W. Brown,et al.  Rapid evolution of animal mitochondrial DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[21]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[22]  G. C. Johns,et al.  A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. , 1998, Molecular biology and evolution.

[23]  G. Lei,et al.  Phylogenetic relationships of salangid fishes (Osmeridae, Salanginae) with comments on phylogenetic placement of the salangids based on mitochondrial DNA sequences. , 2005, Molecular phylogenetics and evolution.

[24]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[25]  R. McDowall Relationships of Galaxioid Fishes with a Further Discussion of Salmoniform Classification , 1969 .

[26]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[27]  D. -. Zhang,et al.  Nuclear integrations: challenges for mitochondrial DNA markers. , 1996, Trends in ecology & evolution.

[28]  A. Ferguson,et al.  Variation in mitochondrial DNA and post‐glacial colonization of north western Europe by brown trout , 1996 .

[29]  M. Miya,et al.  Molecular phylogenetic perspective on the evolution of the deep-sea fish genusCyclothone (Stomiiformes: Gonostomatidae) , 1996, Ichthyological Research.

[30]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[31]  Gerald R. Smith Introgression in fishes : significance for paleontology, cladistics, and evolutionary rates , 1992 .

[32]  J. Huelsenbeck,et al.  MRBAYES : Bayesian inference of phylogeny , 2001 .

[33]  Shunping He,et al.  Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences. , 2004, Molecular phylogenetics and evolution.

[34]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[35]  T. R. Roberts Skeletal anatomy and classification of the neotenic Asian salmoniform superfamily Salangoidea (icefishes or noodlefishes) , 1984 .

[36]  Dou Shuozeng,et al.  Taxonomy, biology and abundance of icefishes, or noodlefishes (Salangidae), in the Yellow River estuary of the Bohai Sea, China , 1994 .

[37]  Derrick J. Zwickl,et al.  Increased taxon sampling greatly reduces phylogenetic error. , 2002, Systematic biology.

[38]  M. Miya,et al.  Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the "Protacanthopterygii". , 2003, Molecular phylogenetics and evolution.

[39]  C. Lydeard,et al.  CHAPTER 17 – The Phylogenetic Utility of the Mitochondrial Cytochrome b Gene for Inferring Relationships among Actinopterygian Fishes , 1997 .

[40]  Barry G. Hall,et al.  Phylogenetic Trees Made Easy: A How-To Manual for Molecular Biologists , 2001 .

[41]  D. P. Begle Relationships of the Osmeroid Fishes and the Use of Reductive Characters in Phylogenetic Analysis , 1991 .

[42]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[43]  C. T. Regan,et al.  XLI.—Descriptions of new fishes from Lake Candidius, Formosa, collected by Dr. A. Moltrecht , 1908 .

[44]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[45]  R. Stockey,et al.  Geological setting and paleobotany of the Joffre Bridge Roadcut fossil locality (Late Paleocene), Red Deer Valley, Alberta , 1999 .

[46]  Stanley H. Weitzman,et al.  Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH ; v. 131, article 4 , 1967 .