Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions
暂无分享,去创建一个
[1] Dennis Stanton,et al. CRANKS AND T -CORES , 1990 .
[2] Anders Björner,et al. Affine permutations of type A , 1995, Electron. J. Comb..
[3] Mark Haiman,et al. Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.
[4] A. Lascoux,et al. Tableau atoms and a new Macdonald positivity conjecture Duke Math J , 2000 .
[5] Tetsuji Miwa,et al. Crystal base for the basic representation of $$U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))$$ , 1990 .
[6] Alain Lascoux. Ordering the Affine Symmetric Group , 2001 .
[7] G. B. Robinson,et al. Representation theory of the symmetric group , 1961 .
[8] Jennifer Morse,et al. Order Ideals in Weak Subposets of Young’s Lattice and Associated Unimodality Conjectures , 2004, math/0405136.
[9] Naihuan Jing,et al. Algebraic Combinatorics And Quantum Groups , 2003 .
[10] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[11] Tetsuji Miwa,et al. Crystal base for the basic representation of , 1990 .
[12] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .
[13] L. Lapointe,et al. Tableaux statistics for two part Macdonald polynomials , 1998 .
[14] Debra J. Waugh. Upper Bounds in Affine Weyl Groups under the Weak Order , 1999, Order.
[15] A. Garsia,et al. A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[16] Jennifer Morse,et al. Schur function analogs for a filtration of the symmetric function space , 2003, J. Comb. Theory, Ser. A.
[17] Michio Jimbo,et al. Paths, Maya Diagrams and representations of ŝl (r, C) , 1989 .