Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense.

Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na(+) concentrations is unknown. We found that Na(+) accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na(+) storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved Leishmania major control. Finally, we found that increasing Na(+) content in the skin by a high-salt diet boosted activation of macrophages in a Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection.

[1]  S. K. Woo,et al.  Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Thoralf Niendorf,et al.  Skin sodium measured with 23Na MRI at 7.0 T , 2014, NMR in biomedicine.

[3]  M. Washington,et al.  High Dietary Salt Intake Exacerbates Helicobacter pylori-Induced Gastric Carcinogenesis , 2013, Infection and Immunity.

[4]  S. Chung,et al.  Fyn and p38 Signaling Are Both Required for Maximal Hypertonic Activation of the Osmotic Response Element-binding Protein/Tonicity-responsive Enhancer-binding Protein (OREBP/TonEBP)* , 2002, The Journal of Biological Chemistry.

[5]  C. Bogdan,et al.  Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. , 1998, Immunity.

[6]  S. Moncada,et al.  Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. , 1990, Journal of immunology.

[7]  R. Warner,et al.  Electron probe analysis of human skin: determination of the water concentration profile. , 1988, The Journal of investigative dermatology.

[8]  L. Shapiro,et al.  Osmotic regulation of cytokine synthesis in vitro. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Tetsuo Noda,et al.  Claudin-based tight junctions are crucial for the mammalian epidermal barrier , 2002, The Journal of cell biology.

[10]  J. Schröder The role of keratinocytes in defense against infection , 2010, Current opinion in infectious diseases.

[11]  J. Segre,et al.  Dialogue between skin microbiota and immunity , 2014, Science.

[12]  S. Akira,et al.  The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors , 2010, Nature Immunology.

[13]  H. Rammensee,et al.  Stimulation of TNFα expression by hyperosmotic stress , 2002, Pflügers Archiv.

[14]  D. Harrison,et al.  Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. , 2013, The Journal of clinical investigation.

[15]  O. Wolfbeis,et al.  Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages. , 2014, The Journal of investigative dermatology.

[16]  G. Schulze-Tanzil,et al.  Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. , 2004, American journal of physiology. Heart and circulatory physiology.

[17]  T. Decker,et al.  The regulation of inflammation by interferons and their STATs , 2013, JAK-STAT.

[18]  K. Alitalo,et al.  Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism , 2009, Nature Medicine.

[19]  A. Rao,et al.  NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Soldati,et al.  Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)! , 2012, Traffic.

[21]  L Bibbs,et al.  A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. , 1994, Science.

[22]  R. Magnus,et al.  Über die Bedeutung der Gewebe als Chlordepots , 1909, Archiv für experimentelle Pathologie und Pharmakologie.

[23]  A. Regev,et al.  Induction of pathogenic Th17 cells by inducible salt sensing kinase SGK1 , 2013, Nature.

[24]  L. Shapiro,et al.  Hyperosmotic stress as a stimulant for proinflammatory cytokine production. , 1997, Experimental cell research.

[25]  H. Schwarz,et al.  E‐cadherin is essential for in vivo epidermal barrier function by regulating tight junctions , 2005, The EMBO journal.

[26]  N. Yosef,et al.  Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells , 2013, Nature.

[27]  J. Brandner,et al.  The skin: an indispensable barrier , 2008, Experimental dermatology.

[28]  W. Junger,et al.  Hypertonic stress regulates T cell function via pannexin‐1 hemichannels and P2X receptors , 2010, Journal of leukocyte biology.

[29]  T. Wynn,et al.  Protective and pathogenic functions of macrophage subsets , 2011, Nature Reviews Immunology.

[30]  M. Uder,et al.  23Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients , 2013, Hypertension.

[31]  J. H. Padtberg Über die Bedeutung der Haut als Chlordepot , 1910, Archiv für experimentelle Pathologie und Pharmakologie.

[32]  S. Ho,et al.  NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Aramburu,et al.  Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5 , 2012, The Journal of experimental medicine.

[34]  D. Hoyt,et al.  Hypertonic saline enhances cellular immune function. , 1994, Circulatory shock.

[35]  M. Uder,et al.  23Na Magnetic Resonance Imaging of Tissue Sodium , 2012, Hypertension.

[36]  Lucas H. Hofmeister,et al.  Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? , 2015, Pflügers Archiv - European Journal of Physiology.

[37]  L. Ivanova,et al.  [Sodium-depositing function of the skin in white rats]. , 1978, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova.

[38]  Xavier Golay,et al.  Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. , 2013, Brain : a journal of neurology.

[39]  C. Turck,et al.  Purification, identification, and characterization of an osmotic response element binding protein. , 2000, Biochemical and biophysical research communications.

[40]  L. Chiariotti,et al.  Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells , 2012, Medical Microbiology and Immunology.

[41]  H. Rammensee,et al.  Stimulation of TNF alpha expression by hyperosmotic stress. , 2002, Pflugers Archiv : European journal of physiology.

[42]  U. Hasler,et al.  Osmoprotective Transcription Factor NFAT5/TonEBP Modulates Nuclear Factor-κB Activity , 2010, Molecular biology of the cell.

[43]  C. Bogdan,et al.  Type 1 Interferon (IFNα/β) and Type 2 Nitric Oxide Synthase Regulate the Innate Immune Response to a Protozoan Parasite , 1998 .

[44]  F. Bihl,et al.  Cell biology and immunology of Leishmania , 2011, Immunological reviews.

[45]  P. Wertz,et al.  The roles of cutaneous lipids in host defense. , 2014, Biochimica et biophysica acta.

[46]  R. Nibbs,et al.  The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density , 2014, The EMBO journal.

[47]  Laurent Schwartz,et al.  Is inflammation a consequence of extracellular hyperosmolarity? , 2009, Journal of Inflammation.

[48]  D. Häussinger,et al.  Osmolyte strategy in human monocytes and macrophages: involvement of p38MAPK in hyperosmotic induction of betaine and myoinositol transporters. , 1998, Archives of biochemistry and biophysics.

[49]  R. Gallo,et al.  Antimicrobial peptides: an essential component of the skin defensive barrier. , 2006, Current topics in microbiology and immunology.