A DFT study of structural, electronic, optical, mechanical, thermoelectric, and magnetic properties of Pb-halide perovskites LiPbX3 (X=Cl, Br, and I) for photovoltaic applications

[1]  M. Tahir,et al.  Structural, mechanical, thermodynamic, electronic, magnetic and optical properties of ZnFe2O4 ferrite: A DFT study , 2022, Optical Materials.

[2]  J. Rehman,et al.  First-principles calculations to investigate structural, electronics, optical and mechanical properties of LaRu2P2 compound for superconducting application , 2022, Molecular Simulation.

[3]  A. Hussain,et al.  First-Principles Investigation of Structural, Electronic, Optical, and Mechanical Properties of Na-Based Fluoro-Perovskites NaXF3: (X = Ni, Co, Be, Ba) , 2022, Optik.

[4]  P. Sarkar,et al.  2D lead free Ruddlesden-Popper phase perovskites as efficient photovoltaic materials: A first-principles investigation , 2022, Computational Materials Science.

[5]  J. Rehman,et al.  First-principles calculations to investigate the effect of Cs-doping in BaTiO3 for water-splitting application , 2022, Solid State Communications.

[6]  A. Hussain,et al.  Structural, electronics, magnetic, optical, mechanical and hydrogen storage properties of Ga‐based hydride‐perovskites XGaH3 (X = K, Li) , 2022, International Journal of Energy Research.

[7]  M. Sagir,et al.  First-principles Calculations to Investigate Variation in the Bandgap of NaSrF3 Fluoro-Perovskite with External Static Isotropic Pressure and its Impact on Optical Properties , 2022, Computational and Theoretical Chemistry.

[8]  K. Hossain,et al.  Band gap shifting of halide perovskite CsCaBr3 from ultra-violet to visible region under pressure for photovoltaic applications , 2022, Materials Science and Engineering: B.

[9]  M. Sagir,et al.  First-principles Calculations to Investigate Structural, Electronics, Optical and Elastic Properties of Sn-based Inorganic Halide-perovskites CsSnX3 (X = I, Br, Cl) for Solar Cell Applications , 2022, Computational and Theoretical Chemistry.

[10]  M. Sagir,et al.  First-principles Calculations to Investigate Ultra-Wide Bandgap Semiconductor Behavior of NaMgF3 Fluoro-perovskite with External Static Isotropic Pressure and its Impact on Optical Properties , 2021, Optik.

[11]  Saadi Berri Theoretical study of physical properties of Ba3B(Nb,Ta)2O9 (B = Mg, Ca, Sr, Cd, Hg, Zn, Fe, Mn, Ni, Co) perovskites , 2021, Computational Condensed Matter.

[12]  M. Usman,et al.  Investigation of Structural, Electronics, Optical, Mechanical and Thermodynamic Properties of YRu2P2 Compound for Superconducting Application , 2021, Journal of Superconductivity and Novel Magnetism.

[13]  K. Shahzad,et al.  Structural, electronics and optical properties of sodium based fluoroperovskites NaXF3 (X = Ca, Mg, Sr and Zn): First principles calculations , 2021 .

[14]  M. Tahir,et al.  Emerging 2D-Nanostructured materials for electrochemical and sensing Application-A review , 2021, International Journal of Hydrogen Energy.

[15]  K. Shahzad,et al.  First-principles calculations to investigate structural, electronic and optical properties of Na based fluoroperovskites NaXF3 (X= Sr, Zn) , 2021, Solid State Communications.

[16]  M. Yuan,et al.  Recent Progress on Formamidinium‐Dominated Perovskite Photovoltaics , 2021, Advanced Energy Materials.

[17]  G. Murtaza,et al.  Pressure induced structural, electronic, optical and thermal properties of CsYbBr3, a theoretical investigation , 2021, Journal of Materials Research and Technology.

[18]  U. Rothlisberger,et al.  Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells , 2020, Science.

[19]  O. Arbouche,et al.  Optoelectronic properties of the novel perovskite materials LiPb(Cl:Br:I)3 for enhanced hydrogen production by visible photo-catalytic activity: Theoretical prediction based on empirical formulae and DFT , 2020 .

[20]  Bao Zhang,et al.  Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells , 2020, Advanced materials.

[21]  Ayesha Binte Ashfaq,et al.  Investigation of LaAlO3 pervoskite compound for optoelectronic and thermoelectric devices under pressure , 2020, Materials Research Express.

[22]  Wei Chen,et al.  Hydrothermally Treated SnO2 as the Electron Transport Layer in High‐Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3% , 2019, Advanced Functional Materials.

[23]  Yuanyuan Zhou,et al.  Fusing Nanowires into Thin Films: Fabrication of Graded‐Heterojunction Perovskite Solar Cells with Enhanced Performance , 2019, Advanced Energy Materials.

[24]  Zhengshan J. Yu,et al.  Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% , 2019, Joule.

[25]  W. Choy,et al.  Sequential Processing: Spontaneous Improvements in Film Quality and Interfacial Engineering for Efficient Perovskite Solar Cells , 2018 .

[26]  S. Dar,et al.  A combined DFT and post-DFT investigation on cubic XMoO3 (X  =  Sr, Ba) perovskite oxides , 2017 .

[27]  Wai Kin Chan,et al.  Encapsulation of Perovskite Solar Cells for High Humidity Conditions. , 2016, ChemSusChem.

[28]  Neil C. Greenham,et al.  Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3‐xClx Perovskite Solar Cells: Kinetics and Mechanisms , 2016 .

[29]  S. Pang,et al.  Exceptional Morphology-Preserving Evolution of Formamidinium Lead Triiodide Perovskite Thin Films via Organic-Cation Displacement. , 2016, Journal of the American Chemical Society.

[30]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[31]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[32]  Peng Wang,et al.  An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. , 2011, Nano letters.

[33]  T. Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[34]  A. Mookerjee,et al.  Structural and optical properties of paraelectric SrTiO3 , 2000 .

[35]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .