Polygon Area Decomposition for Multiple-Robot Workspace Division

A new polygon decomposition problem, the anchored area partition problem, which has applications to a multiple-robot terrain-covering problem is presented. This problem concerns dividing a given polygon P into n polygonal pieces, each of a specified area and each containing a certain point (site) on its boundary or in its interior. First the algorithm for the case when P is convex and contains no holes is presented. Then the generalized version that handles nonconvex and nonsimply connected polygons is presented. The algorithm uses sweep-line and divide-and-conquer techniques to construct the polygon partition. The input polygon P is assumed to have been divided into a set of p convex pieces (p = 1 when P is convex), which can be done in O(vPloglog vP) time, where vP is the number of vertices of P and p = O(vP), using algorithms presented elsewhere in the literature. Assuming this convex decomposition, the running time of the algorithm presented here is O(pn2+vn), where v is the sum of the number of vertices of the convex pieces.

[1]  Bernard Chazelle,et al.  Decomposing a polygon into its convex parts , 1979, STOC.

[2]  Takao Asano,et al.  Minimum partition of polygonal regions into trapezoids , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[3]  Andrzej Lingas,et al.  The Power of Non-Rectilinear Holes , 1982, ICALP.

[4]  Leila De Floriani,et al.  An on-line algorithm for constrained Delaunay triangulation , 1992, CVGIP Graph. Model. Image Process..

[5]  Kurt Mehlhorn,et al.  Fast Triangulation of Simple Polygons , 1983, FCT.

[6]  Andrzej Lingas,et al.  Bounds on the Length of Convex Partitions of Polygons , 1984, FSTTCS.

[7]  S. Sitharama Iyengar,et al.  Autonomous robot navigation in unknown terrains: incidental learning and environmental exploration , 1990, IEEE Trans. Syst. Man Cybern..

[8]  Christos H. Papadimitriou,et al.  On the Optimal Bisection of a Polygon , 1992, INFORMS J. Comput..

[9]  Brenda S. Baker,et al.  Nonobtuse triangulation of polygons , 1988, Discret. Comput. Geom..

[10]  Joseph O'Rourke,et al.  Some NP-hard polygon decomposition problems , 1983, IEEE Trans. Inf. Theory.

[11]  Claire Mathieu,et al.  Tiling a polygon with rectangles , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[12]  Sampath Kannan,et al.  Tiling polygons with parallelograms , 1992, Discret. Comput. Geom..

[13]  Valeriu Soltan,et al.  Minimum dissection of rectilinear polygon with arbitrary holes into rectangles , 1992, SCG '92.

[14]  Vladimir J. Lumelsky,et al.  A terrain-covering algorithm for an AUV , 1996, Auton. Robots.

[15]  Boris Aronov On the geodesic Voronoi diagram of point sites in a simple polygon , 1987, SCG '87.

[16]  Witold Lipski,et al.  Finding a manhattan path and related problems , 1983, Networks.

[17]  B. Chazelle Computational geometry and convexity , 1980 .

[18]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case , 1987, IEEE Journal on Robotics and Automation.

[19]  Alan E. Middleditch,et al.  Convex Decomposition of Simple Polygons , 1984, TOGS.

[20]  G. Tóth,et al.  A Survey of Recent Results in the Theory of Packing and Covering , 1993 .

[21]  Chiuyuan Chen,et al.  On the minimality of polygon triangulation , 1990, BIT Comput. Sci. Sect..

[22]  Tiow Seng Tan,et al.  An O(n2 log n) Time Algorithm for the Minmax Angle Triangulation , 1992, SIAM J. Sci. Comput..

[23]  Ioannis T. Christou,et al.  Optimal equi-partition of rectangular domains for parallel computation , 1996, J. Glob. Optim..

[24]  Vladimir J. Lumelsky,et al.  Dynamic path planning in sensor-based terrain acquisition , 1990, IEEE Trans. Robotics Autom..

[25]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[26]  J. Mark Keil,et al.  Decomposing a Polygon into Simpler Components , 1985, SIAM J. Comput..

[27]  Marshall W. Bern,et al.  Linear-size nonobtuse triangulation of polygons , 1994, SCG '94.