High-Mobility Holes in Dual-Gated WSe2 Field-Effect Transistors.

We demonstrate dual-gated p-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe2) using high work-function platinum source/drain contacts and a hexagonal boron nitride top-gate dielectric. A device topology with contacts underneath the WSe2 results in p-FETs with ION/IOFF ratios exceeding 10(7) and contacts that remain ohmic down to cryogenic temperatures. The output characteristics show current saturation and gate tunable negative differential resistance. The devices show intrinsic hole mobilities around 140 cm(2)/(V s) at room temperature and approaching 4000 cm(2)/(V s) at 2 K. Temperature-dependent transport measurements show a metal-insulator transition, with an insulating phase at low densities and a metallic phase at high densities. The mobility shows a strong temperature dependence consistent with phonon scattering, and saturates at low temperatures, possibly limited by Coulomb scattering or defects.

[1]  S. Sarma,et al.  Two-dimensional metal-insulator transition as a potential fluctuation driven semiclassical transport phenomenon , 2013, 1306.2621.

[2]  Kenji Watanabe,et al.  Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. , 2015, Nano letters.

[3]  B. Streetman Solid state electronic devices , 1972 .

[4]  S. Sarma,et al.  Two-dimensional metal-insulator transition as a strong localization induced crossover phenomenon , 2014, 1401.4762.

[5]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[6]  E. Pop,et al.  Multi-valley high-field transport in 2-dimensional MoS2 transistors , 2014, 72nd Device Research Conference.

[7]  P. Ye,et al.  Performance Potential and Limit of MoS2 Transistors , 2015, Advanced materials.

[8]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[9]  Ashok Kumar,et al.  Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors , 2012 .

[10]  K. Thygesen,et al.  Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS 2 from first principles , 2012, 1206.2003.

[11]  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.

[12]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[13]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[14]  Andras Kis,et al.  Electron and hole mobilities in single-layer WSe2. , 2014, ACS nano.

[15]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[16]  Kyeongjae Cho,et al.  Metal contacts on physical vapor deposited monolayer MoS2. , 2013, ACS nano.

[17]  Ning Wang,et al.  Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures , 2014, Nature Communications.

[18]  Soo Doo Chae,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[19]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[20]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[21]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[22]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[23]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[24]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[25]  D. Rhodes,et al.  Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors , 2015, Scientific Reports.

[26]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[27]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[28]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[29]  E. Tutuc,et al.  Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers , 2012 .

[30]  S. Banerjee,et al.  Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates , 2015 .

[31]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[32]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[33]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[34]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[35]  E. Tutuc,et al.  Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device , 2009, IEEE Electron Device Letters.

[36]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[37]  Yu Han,et al.  High-quality BN/WSe2/BN heterostructure and its quantum oscillations , 2015 .

[38]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[39]  Christian Kloc,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[40]  S. Larentis,et al.  Band Alignment in WSe2-Graphene Heterostructures. , 2015, ACS nano.

[41]  Nicola Marzari,et al.  Surface energies, work functions, and surface relaxations of low index metallic surfaces from first principles , 2008, 0801.1077.

[42]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[43]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[44]  D. Jena,et al.  Charge Scattering and Mobility in Atomically Thin Semiconductors , 2013, 1310.7157.

[45]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[46]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[47]  Zhixian Zhou,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[48]  Yan Xin,et al.  Field-effect transistors based on few-layered α-MoTe(2). , 2014, ACS nano.