On the coefficients of the Baez-Duarte criterion for the Riemann hypothesis and their extensions

We present analytic properties and extensions of the constants ck appearing in the Baez-Duarte criterion for the Riemann hypothesis. These constants are the coefficients of Pochhammer polynomials in a series representation of the reciprocal of the Riemann zeta function. We present generalizations of this representation to the Hurwitz zeta and many other special functions. We relate the corresponding coefficients to other known constants including the Stieltjes constants and present summatory relations. In addition, we generalize the Maslanka hypergeometric-like representation for the zeta function in several ways.

[1]  Luis Báez-Duarte,et al.  A sequential Riesz-like criterion for the Riemann hypothesis , 2005, Int. J. Math. Math. Sci..

[2]  M. Riesz Sur l’hypothèse de Riemann , 1916 .

[3]  K. Mašlanka Báez-Duarte's Criterion for the Riemann Hypothesis and Rice's Integrals , 2006, math/0603713.

[4]  M. Wolf Evidence in Favor of the Baez-Duarte Criterion for the Riemann Hypothesis , 2006, math/0605485.

[5]  M. Coffey New summation relations for the Stieltjes constants , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Gareth Jones,et al.  The Riemann Zeta-Function , 1992 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  John Riordan,et al.  Inverse Relations and Combinatorial Identities , 1964 .

[10]  A. Ivic,et al.  The Riemann zeta-function , 1985 .

[11]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[12]  Llan Vardi,et al.  Determinants of Laplacians and multiple gamma functions , 1988 .

[13]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[14]  New results on the Stieltjes constants: Asymptotic and exact evaluation , 2005, math-ph/0506061.

[15]  R. Schimming,et al.  Differential polynomial expressions related to the Kadomtsev–Petviashvili and Korteweg–de Vries hierarchies , 1999 .

[16]  George E. Andrews,et al.  Special Functions: Partitions , 1999 .

[17]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[18]  Mark W. Coffey Toward Verification of the Riemann Hypothesis: Application of the Li Criterion , 2005 .