The dense warm ionized medium in the inner Galaxy

Context. Ionized interstellar gas is an important component of the interstellar medium and its lifecycle. The recent evidence for a widely distributed highly ionized warm interstellar gas with a density intermediate between the warm ionized medium (WIM) and compact H II regions suggests that there is a major gap in our understanding of the interstellar gas. Aims. Our goal is to investigate the properties of the dense WIM in the Milky Way using spectrally resolved SOFIA GREAT [N II] 205 μm fine-structure lines and Green Bank Telescope hydrogen radio recombination lines (RRL) data, supplemented by spectrally unresolved Herschel PACS [N II] 122μm data, and spectrally resolved 12CO. Methods. We observed eight lines of sight (LOS) in the 20° < l < 30° region in the Galactic plane. We analyzed spectrally resolved lines of [N II] at 205 μm and RRL observations, along with the spectrally unresolved Herschel PACS 122 μm emission, using excitation and radiative transfer models to determine the physical parameters of the dense WIM. We derived the kinetic temperature, as well as the thermal and turbulent velocity dispersions from the [N II] and RRL linewidths. Results. The regions with [N II] 205 μm emission are characterized by electron densities, n(e) ~ 10−35 cm−3, temperatures range from 3400 to 8500 K, and nitrogen column densities N(N+) ~ 7 × 1016 to 3 × 1017 cm−2. The ionized hydrogen column densities range from 6 × 1020 to 1.7 × 1021 cm−2 and the fractional nitrogen ion abundance x(N+) ~ 1.1 × 10−4 to 3.0 × 10−4, implying an enhanced nitrogen abundance at a distance ~4.3 kpc from the Galactic Center. The [N II] 205 μm emission lines coincide with CO emission, although often with an offset in velocity, which suggests that the dense warm ionized gas is located in, or near, star-forming regions, which themselves are associated with molecular gas. Conclusions. These dense ionized regions are found to contribute ≳50% of the observed [C II] intensity along these LOS. The kinetic temperatures we derive are too low to explain the presence of N+ resulting from electron collisional ionization and/or proton charge transfer of atomic nitrogen. Rather, these regions most likely are ionized by extreme ultraviolet (EUV) radiation from nearby star-forming regions or as a result of EUV leakage through a clumpy and porous interstellar medium.

[1]  B. Liu,et al.  The GBT Diffuse Ionized Gas Survey (GDIGS): Survey Overview and First Data Release , 2021, The Astrophysical Journal Supplement Series.

[2]  Manash R. Samal,et al.  The PDR structure and kinematics around the compact H ii regions S235 A and S235 C with [C ii], [13C ii], [O i], and HCO+ line profiles , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  J. Stutzki,et al.  [C II] 158 μm self-absorption and optical depth effects , 2020, Astronomy & Astrophysics.

[4]  S. Horiuchi,et al.  Electron Densities and Nitrogen Abundances in Ionized Gas Derived Using [N ii] Fine-structure and Hydrogen Recombination Lines , 2019, The Astrophysical Journal.

[5]  Jennifer A. Johnson Populating the periodic table: Nucleosynthesis of the elements , 2019, Science.

[6]  C. Esteban,et al.  Revisiting the radial abundance gradients of nitrogen and oxygen of the Milky Way , 2018, 1805.00714.

[7]  P. Goldsmith,et al.  Ionized gas in the Scutum spiral arm as traced in [N II] and [C II] , 2017, 1708.02310.

[8]  E. Pellegrini,et al.  The Origins of [C ii] Emission in Local Star-forming Galaxies , 2017, 1707.04435.

[9]  S. Viti,et al.  Radiative transfer meets Bayesian statistics: where does a galaxy's [C II] emission come from? , 2016, 1607.03488.

[10]  U. U. Graf,et al.  The upGREAT 1.9 THz multi-pixel high resolution spectrometer for the SOFIA Observatory , 2016, 1607.04239.

[11]  D. Balser,et al.  H ii REGION IONIZATION OF THE INTERSTELLAR MEDIUM: A CASE STUDY OF NGC 7538 , 2016, 1605.02685.

[12]  P. Goldsmith,et al.  [C II] and [N II] from dense ionized regions in the Galaxy , 2016, 1605.00664.

[13]  D. Balser,et al.  TMBIDL: Single dish radio astronomy data reduction package , 2016 .

[14]  P. Goldsmith,et al.  HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION , 2015, 1510.05706.

[15]  P. Goldsmith,et al.  Internal structure of spiral arms traced with [C II]: Unraveling the warm ionized medium, H I, and molecular emission lanes , 2015 .

[16]  D. Balser,et al.  AZIMUTHAL METALLICITY STRUCTURE IN THE MILKY WAY DISK , 2015, 1505.04090.

[17]  K. Menten,et al.  [C II] absorption and emission in the diffuse interstellar medium across the Galactic plane , 2014, 1410.4663.

[18]  A. Zavagno,et al.  MOPRA CO OBSERVATIONS OF THE BUBBLE H ii REGION RCW 120 , 2014, 1412.6470.

[19]  K. Menten,et al.  First detection of [N II] 205 micrometer absorption in interstellar gas , 2014, 1406.3052.

[20]  P. Goldsmith,et al.  A Herschel (C II) Galactic plane survey II. CO-dark H2 in clouds , 2013, 1312.3320.

[21]  P. Goldsmith,et al.  A Herschel [C ii] Galactic plane survey - I. The global distribution of ISM gas components , 2013, 1304.7770.

[22]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[23]  P. Goldsmith,et al.  [CII] 158 micron line detection of the warm ionized medium in the Scutum--Crux spiral arm tangency , 2012, 1205.0550.

[24]  Erin C. Smith,et al.  EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY , 2012, 1205.0791.

[25]  U. U. Graf,et al.  GREAT: the SOFIA high-frequency heterodyne instrument , 2012, 1203.2845.

[26]  J. Stutzki,et al.  [12Cii] and [13C ii] 158 μ m emission from NGC 2024: Large column densities of ionized carbon , 2012, 1203.2012.

[27]  Y. Okada,et al.  GREAT/SOFIA atmospheric calibration , 2012, 1203.1661.

[28]  J. Kamenetzky,et al.  A 205 μm [N ii] MAP OF THE CARINA NEBULA , 2011 .

[29]  S. Tayal ELECTRON EXCITATION COLLISION STRENGTHS FOR SINGLY IONIZED NITROGEN , 2011 .

[30]  D. Balser,et al.  H ii REGION METALLICITY DISTRIBUTION IN THE MILKY WAY DISK , 2011, 1106.1660.

[31]  D. Balser,et al.  THE GREEN BANK TELESCOPE H ii REGION DISCOVERY SURVEY. II. THE SOURCE CATALOG , 2011, 1103.5085.

[32]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[33]  D. Li,et al.  Herschel / HIFI : first science highlights Special feature L etter to the E ditor C + detection of warm dark gas in diffuse clouds , 2010 .

[34]  L. Anderson,et al.  THE GREEN BANK TELESCOPE GALACTIC H ii REGION DISCOVERY SURVEY , 2010, 1006.5929.

[35]  R. J. Reynolds,et al.  The warm ionized medium in spiral galaxies , 2009, 0901.0941.

[36]  S. Tayal Electron impact excitation collision strength for transitions in C II , 2008 .

[37]  D. Hollenbach,et al.  [Si II], [Fe II], [C II], and H2 Emission from Massive Star-forming Regions , 2006 .

[38]  N. Abel The H+ region contribution to [C ii] 158-μm emission , 2006, astro-ph/0604212.

[39]  G. Ferland,et al.  The H II Region/PDR Connection: Self-consistent Calculations of Physical Conditions in Star-forming Regions , 2005, astro-ph/0506514.

[40]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[41]  R. Meijerink,et al.  Diagnostics of irradiated gas in galaxy nuclei. I. A far-ultraviolet and X-ray dominated region code , 2005, astro-ph/0502454.

[42]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[43]  A. Sternberg,et al.  Ionizing Photon Emission Rates from O- and Early B-Type Stars and Clusters , 2003, astro-ph/0312232.

[44]  T. Onaka,et al.  Detection of highly-ionized diffuse gas in the Galactic plane , 2002 .

[45]  S. Nahar,et al.  Electron-Ion Recombination Rate Coefficients, Photoionization Cross Sections, and Ionization Fractions for Astrophysically Abundant Elements. I. Carbon and Nitrogen , 1997 .

[46]  G. S. Voronov,et al.  A PRACTICAL FIT FORMULA FOR IONIZATION RATE COEFFICIENTS OF ATOMS AND IONS BY ELECTRON IMPACT:Z= 1–28 , 1997 .

[47]  Gary J. Ferland,et al.  Rate coefficients for charge transfer between hydrogen and the first 30 elements , 1996 .

[48]  K. Evenson,et al.  The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance , 1994 .

[49]  Jr.,et al.  MORPHOLOGY OF THE INTERSTELLAR COOLING LINES DETECTED BY COBE , 1993, astro-ph/9311032.

[50]  R. J. Reynolds,et al.  Ionized Disk/Halo Gas: Insight from Optical Emission Lines and Pulsar Dispersion Measures , 1991 .

[51]  Samson,et al.  Single- and double-photoionization cross sections of atomic nitrogen from threshold to 31. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[52]  R. Rubin The Effect of Density Variations on Elemental Abundance Ratios in Gaseous Nebulae , 1989 .

[53]  G. Blake,et al.  Direct measurement of the fine-structure interval and g_J factors of singly ionized atomic carbon by laser magnetic resonance , 1986 .

[54]  Fred Hoyle,et al.  On the Existence of an Ionized Layer about the Galactic Plane , 1963 .