Recent advances in the IBM GALE Mandarin transcription system

This paper describes the system and algorithmic developments in the automatic transcription of Mandarin broadcast speech made at IBM in the second year of the DARPA GALE program. Technical advances over our previous system include improved acoustic models using embedded tone modeling, and a new topic-adaptive language model (LM) rescoring technique based on dynamically generated LMs. We present results on three community-defined test sets designed to cover both the broadcast news and the broadcast conversation domain. It is shown that our new baseline system attains a 15.4% relative reduction in character error rate compared with our previous GALE evaluation system. And a further 13.6% improvement over the baseline is achieved with the two described techniques.

[1]  George Saon,et al.  Maximum likelihood discriminant feature spaces , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[2]  Geoffrey Zweig,et al.  fMPE: discriminatively trained features for speech recognition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[3]  Mark J. F. Gales,et al.  Maximum likelihood linear transformations for HMM-based speech recognition , 1998, Comput. Speech Lang..

[4]  Ricky Ho Yin Chan,et al.  Improving broadcast news transcription by lightly supervised discriminative training , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  Mark J. F. Gales,et al.  The Cu-Htk Mandarin Broadcast News Transcription System , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[6]  Hideki Kawahara,et al.  YIN, a fundamental frequency estimator for speech and music. , 2002, The Journal of the Acoustical Society of America.

[7]  Dongxin Xu,et al.  The BBN Mandarin broadcast news transcription system , 2005, INTERSPEECH.

[8]  Daniel Povey,et al.  Minimum Phone Error and I-smoothing for improved discriminative training , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Geoffrey Zweig,et al.  Advances in speech transcription at IBM under the DARPA EARS program , 2006, IEEE Transactions on Audio, Speech, and Language Processing.