Quantum Computing with Rotation-Symmetric Bosonic Codes

Bosonic rotation codes, introduced here, are a broad class of bosonic error-correcting codes based on phase-space rotation symmetry. We present a universal quantum computing scheme applicable to a subset of this class--number-phase codes--which includes the well-known cat and binomial codes, among many others. The entangling gate in our scheme is code-agnostic and can be used to interface different rotation-symmetric encodings. In addition to a universal set of operations, we propose a teleportation-based error correction scheme that allows recoveries to be tracked entirely in software. Focusing on cat and binomial codes as examples, we compute average gate fidelities for error correction under simultaneous loss and dephasing noise and show numerically that the error-correction scheme is close to optimal for error-free ancillae and ideal measurements. Finally, we present a scheme for fault-tolerant, universal quantum computing based on concatenation of number-phase codes and Bacon-Shor subsystem codes.

[1]  Jean-Marc Lévy-Leblond,et al.  Who is afraid of nonhermitian operators? A quantum description of angle and phase , 1976 .

[2]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[3]  Mazyar Mirrahimi,et al.  Repetition cat-qubits: fault-tolerant quantum computation with highly reduced overhead , 2019 .

[4]  S. Barnett,et al.  Unitary Phase Operator in Quantum Mechanics , 1988 .

[5]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[6]  G. J. Milburn,et al.  Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping , 1998, quant-ph/9809037.

[7]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[8]  Yang Wang,et al.  Quantum error correction with the toric Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[9]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[10]  Kyungjoo Noh,et al.  Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[11]  Alexei Kitaev,et al.  Protected qubit based on a superconducting current mirror , 2006 .

[12]  Liang Jiang,et al.  Fault-tolerant detection of a quantum error , 2018, Science.

[13]  Atsushi Okamoto,et al.  Analog Quantum Error Correction with Encoding a Qubit into an Oscillator. , 2017, Physical review letters.

[14]  Tobias Gehring,et al.  Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.

[15]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[16]  D. Berry,et al.  Adaptive Measurements in the Optical Quantum Information Laboratory , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Singh,et al.  Photoelectron waiting times and atomic state reduction in resonance fluorescence. , 1989, Physical review. A, General physics.

[18]  P. Loock,et al.  Quantum error correction against photon loss using multicomponent cat states , 2016, 1605.00357.

[19]  Barnett,et al.  Phase properties of the quantized single-mode electromagnetic field. , 1989, Physical review. A, General physics.

[20]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[21]  Victor V. Albert,et al.  Performance and structure of single-mode bosonic codes , 2017, 1708.05010.

[22]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[23]  Martin B Plenio,et al.  Universal Quantum Computing with Arbitrary Continuous-Variable Encoding. , 2016, Physical review letters.

[24]  V. Belavkin Optimal multiple quantum statistical hypothesis testing , 1975 .

[25]  J. Jeffers,et al.  Linear quantum optical bare raising operator , 2017 .

[26]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[27]  Victor V. Albert,et al.  Dynamically protected cat-qubits: a new paradigm for universal quantum computation , 2013, 1312.2017.

[28]  A. S. Holevo,et al.  Covariant measurements and imprimitivity systems , 1984 .

[29]  Geoff J. Pryde,et al.  Experimental optical phase measurement at the exact Heisenberg limit (Conference Presentation) , 2016, Security + Defence.

[30]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[31]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[32]  Andrew W. Cross,et al.  Fault-tolerant preparation of approximate GKP states , 2019, New Journal of Physics.

[33]  V. Negnevitsky,et al.  Encoding a qubit in a trapped-ion mechanical oscillator , 2018, Nature.

[34]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[35]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[36]  B. M. Terhal,et al.  Encoding a qubit into a cavity mode in circuit QED using phase estimation , 2015, 1506.05033.

[37]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[38]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[39]  N. C. Menicucci,et al.  Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. , 2013, Physical review letters.

[40]  S. Barnett,et al.  On the Hermitian Optical Phase Operator , 1989 .

[41]  P. Raynal,et al.  Encoding many qubits in a rotor , 2010, 1003.1201.

[42]  R. J. Schoelkopf,et al.  Reaching 10 ms single photon lifetimes for superconducting aluminum cavities , 2013, 1302.4408.

[43]  John Preskill,et al.  Optimal Bacon-Shor codes , 2012, Quantum Inf. Comput..

[44]  Mazyar Mirrahimi,et al.  Stabilized Cat in a Driven Nonlinear Cavity: A Fault-Tolerant Error Syndrome Detector , 2018, Physical Review X.

[45]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[46]  Yvonne Y Gao,et al.  Entangling Bosonic Modes via an Engineered Exchange Interaction , 2020 .

[47]  John Preskill,et al.  Fault-tolerant quantum computation with asymmetric Bacon-Shor codes , 2012, 1211.1400.

[48]  Liang Jiang,et al.  Cat Codes with Optimal Decoherence Suppression for a Lossy Bosonic Channel. , 2016, Physical review letters.

[49]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[50]  Debbie W. Leung,et al.  Bosonic quantum codes for amplitude damping , 1997 .

[51]  L. Pryadko,et al.  Quantum error correction with the toric Gottesman-Kitaev-Preskill code , 2018, Physical Review A.

[52]  David Poulin,et al.  Fault-Tolerant Quantum Computing in the Pauli or Clifford Frame with Slow Error Diagnostics , 2017, 1704.06662.

[53]  Peter Bernard Brooks,et al.  Quantum Error Correction with Biased Noise , 2013 .

[54]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[55]  Nicolas C. Menicucci,et al.  Modular Bosonic Subsystem Codes. , 2019, Physical review letters.

[56]  Christian Weedbrook,et al.  ON states as resource units for universal quantum computation with photonic architectures , 2018, Physical Review A.

[57]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[58]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[59]  Mazyar Mirrahimi,et al.  Repetition Cat Qubits for Fault-Tolerant Quantum Computation , 2019 .

[60]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[61]  Kyungjoo Noh,et al.  Fault-Tolerant Bosonic Quantum Error Correction with the Surface-GKP Code , 2020 .

[62]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[63]  D. Poulin,et al.  Reducing the overhead for quantum computation when noise is biased , 2015, 1509.05032.

[64]  Nicolas C. Menicucci,et al.  Encoding qubits into oscillators with atomic ensembles and squeezed light , 2017, 1703.02107.

[65]  B. Terhal,et al.  Breeding Grid States From Schrödinger Cat States without Post-Selection , 2018 .

[66]  Daniel Gottesman,et al.  Quantum fault tolerance in small experiments , 2016, 1610.03507.

[67]  Liang Jiang,et al.  Cavity State Manipulation Using Photon-Number Selective Phase Gates. , 2015, Physical review letters.

[68]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[69]  Andrew W. Cross,et al.  A comparative code study for quantum fault tolerance , 2007, Quantum Inf. Comput..

[70]  A. Wünsche Ordered operator expansions and reconstruction from ordered moments , 1999 .

[71]  H. M. Wiseman Adaptive single-shot phase measurements: The full quantum theory , 1998 .

[72]  Liang Jiang,et al.  Entanglement of bosonic modes through an engineered exchange interaction , 2018, Nature.

[73]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[74]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[75]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[76]  E. Knill Scalable quantum computing in the presence of large detected-error rates , 2003, quant-ph/0312190.

[77]  Leigh S. Martin,et al.  Implementation of a canonical phase measurement with quantum feedback , 2019 .

[78]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[79]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[80]  Sanders Superpositions of distinct phase states by a nonlinear evolution. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[81]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[82]  V. Negnevitsky,et al.  Sequential modular position and momentum measurements of a trapped ion mechanical oscillator , 2017, 1709.10469.

[83]  G. J. Milburn,et al.  Preparing encoded states in an oscillator , 2002 .

[84]  Yu Zhang,et al.  Universal controlled-phase gate with cat-state qubits in circuit QED , 2017, 1706.07083.

[85]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[86]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[87]  Wiseman,et al.  Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.

[88]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[89]  Fernando Pastawski,et al.  Fault-tolerant logical gates in quantum error-correcting codes , 2014, 1408.1720.

[90]  Olivier Pfister,et al.  Gottesman-Kitaev-Preskill state preparation by photon catalysis. , 2019, 1903.01925.

[91]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[92]  Geoff J Pryde,et al.  Experimental optical phase measurement approaching the exact Heisenberg limit , 2017, Nature Communications.

[93]  Liang Jiang,et al.  Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes , 2018, IEEE Transactions on Information Theory.

[94]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[95]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[96]  Designing good bosonic quantum codes via creating destructive interference , 2019, 1901.05358.

[97]  Liang Jiang,et al.  High-Fidelity Measurement of Qubits Encoded in Multilevel Superconducting Circuits , 2019, Physical Review X.

[98]  Liang Jiang,et al.  New class of quantum error-correcting codes for a bosonic mode , 2016, 1602.00008.

[99]  A. Jordan,et al.  Energy measurements and preparation of canonical phase states of a nano-mechanical resonator , 2007, 0707.3803.

[100]  Victor V. Albert,et al.  Pair-cat codes: autonomous error-correction with low-order nonlinearity , 2018, Quantum Science and Technology.

[101]  S. Girvin,et al.  Bias-preserving gates with stabilized cat qubits , 2019, Science Advances.

[102]  V. P. Belavkin,et al.  Optimum distinction of non-orthogonal quantum signals , 1975 .

[103]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[104]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[105]  Liang Jiang,et al.  Universal control of an oscillator with dispersive coupling to a qubit , 2015, 1502.08015.

[106]  Rafael N. Alexander,et al.  All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code. , 2019, Physical review letters.

[107]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[108]  A. Tomita,et al.  Tracking quantum error correction , 2018, Physical Review A.

[109]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[110]  Cédric Bény,et al.  General conditions for approximate quantum error correction and near-optimal recovery channels. , 2009, Physical review letters.

[111]  C. K. Andersen,et al.  Quantum annealing with all-to-all connected nonlinear oscillators , 2016, Nature Communications.