Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow

We describe an approach to construct hexahedral solid NURBS (Non-Uniform Rational B-Splines) meshes for patient-specific vascular geometric models from imaging data for use in isogeometric analysis. First, image processing techniques, such as contrast enhancement, filtering, classification, and segmentation, are used to improve the quality of the input imaging data. Then, lumenal surfaces are extracted by isocontouring the preprocessed data, followed by the extraction of vascular skeleton via Voronoi and Delaunay diagrams. Next, the skeleton-based sweeping method is used to construct hexahedral control meshes. Templates are designed for various branching configurations to decompose the geometry into mapped meshable patches. Each patch is then meshed using one-to-one sweeping techniques, and boundary vertices are projected to the lumenal surface. Finally, hexahedral solid NURBS are constructed and used in isogeometric analysis of blood flow. Piecewise linear hexahedral meshes can also be obtained using this approach. Examples of patient-specific arterial models are presented.

[1]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[2]  David R. White,et al.  CCSweep: automatic decomposition of multi-sweep volumes , 2003, Engineering with Computers.

[3]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[4]  T. Blacker The Cooper Tool , 1996 .

[5]  Kaleem Siddiqi,et al.  Flux driven fly throughs , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[6]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[7]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[8]  M. Sabin,et al.  Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .

[9]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .

[10]  Anne Verroust-Blondet,et al.  Extracting skeletal curves from 3D scattered data , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[11]  David R. White,et al.  Methods for Multisweep Automation , 2000, IMR.

[12]  Yongjie Zhang,et al.  3D Finite Element Meshing from Imaging Data. , 2005, Computer methods in applied mechanics and engineering.

[13]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[14]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[15]  Charles W. Anderson,et al.  Fast Generation of NURBS Surfaces from Polygonal Mesh Models of Human Anatomy , 1999 .

[16]  Arthur W. Toga,et al.  Efficient Skeletonization of Volumetric Objects , 1999, IEEE Trans. Vis. Comput. Graph..

[17]  Kazuhiro Nakahashi,et al.  Robust generation of high‐quality unstructured meshes on realistic biomedical geometry , 2006 .

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[20]  Zeyun Yu,et al.  Image segmentation using gradient vector diffusion and region merging , 2002, Object recognition supported by user interaction for service robots.

[21]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[22]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.

[23]  H. N. Gürsoy Tetrahedral finite element mesh generation from NURBS solid models , 2005, Engineering with Computers.

[24]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[25]  Yongjie Zhang,et al.  Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. , 2006, Computer methods in applied mechanics and engineering.

[26]  Kenji Shimada,et al.  Finite Element Mesh Sizing for Surfaces Using Skeleton , 2004, IMR.

[27]  Gerhard A. Holzapfel,et al.  Computational Biomechanics of Soft Biological Tissue , 2004 .

[28]  Matthew L. Staten,et al.  BMSweep: Locating Interior Nodes During Sweeping , 1999, Engineering with Computers.

[29]  Steven E. Benzley,et al.  A Multiple Source and Target Sweeping Method for Generating All Hexahedral Finite Element Meshes , 2007 .

[30]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[31]  S G Zachariah,et al.  Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics. , 1996, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[32]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[33]  Chandrajit L. Bajaj,et al.  Identifying flat and tubular regions of a shape by unstable manifolds , 2006, SPM '06.

[34]  D. Siersma Voronoi diagrams and Morse theory of the distance function , 1996 .

[35]  Deborah Silver,et al.  Curve-skeleton applications , 2005, VIS 05. IEEE Visualization, 2005..

[36]  Tamal K. Dey,et al.  Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee , 2003, Algorithmica.

[37]  Charles A. Taylor,et al.  Efficient anisotropic adaptive discretization of the cardiovascular system , 2006 .

[38]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[39]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[40]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[41]  Tzu-Yi Yu,et al.  NURBS evaluation and utilization for grid generation , 1996 .

[42]  Aly A. Farag,et al.  Robust centerline extraction framework using level sets , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[43]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[44]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[45]  Patrick M. Knupp Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on Two-and-One-Half Dimensional Geometries , 1998, IMR.

[46]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[47]  Francis Loth,et al.  An All-Hex Meshing Strategy for Bifurcation Geometries in Vascular Flow Simulation , 2005, IMR.

[48]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[49]  Mie Sato,et al.  Penalized-Distance Volumetric Skeleton Algorithm , 2001, IEEE Trans. Vis. Comput. Graph..

[50]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[51]  백영렬 Grid Generation 소프트웨어 , 2002 .

[52]  Cecil Armstrong,et al.  MEDIALS FOR MESHING AND MORE , 2006 .

[53]  Zeyun Yu,et al.  A fast and adaptive method for image contrast enhancement , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[54]  K.R. Shao,et al.  A New Approacu to Automatic Quadrilateral Mesh Generation , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.