Minkowski Inequality on complete Riemannian manifolds with nonnegative Ricci curvature

In this paper we consider Riemannian manifolds of dimension at least 3, with nonnegative Ricci curvature and Euclidean Volume Growth. For every open bounded subset with smooth boundary we prove the validity of a new optimal Minkowski Inequality. Along with the proof, we establish sharp monotonicity formulas, holding along the level sets of p-capacitary potentials in p-nonparabolic manifolds with nonnegative Ricci curvature. MSC (2020): 35A16, 35B06, 31C15, 53C21, 53E10, 49Q10, 39B62.

[1]  T. Colding,et al.  On uniqueness of tangent cones for Einstein manifolds , 2012, 1206.4929.

[2]  P. Castillon Submanifolds, isoperimetric inequalities and optimal transportation , 2009, 0908.2711.

[3]  Hongwei Lou,et al.  On singular sets of local solutions to p-Laplace equations , 2008 .

[4]  K. Nyström,et al.  The Hadamard variational formula and the Minkowski problem for p-capacity , 2015 .

[5]  Gerhard Huisken,et al.  Geometric evolution equations for hypersurfaces , 1999 .

[6]  Yi Wang,et al.  On Aleksandrov-Fenchel Inequalities for k-Convex Domains , 2011 .

[7]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[8]  H. Hein On gravitational instantons , 2010 .

[9]  V. Agostiniani,et al.  Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature , 2018, Inventiones mathematicae.

[10]  N. Trudinger Pointwise estimates and quasilinear parabolic equations , 1968 .

[11]  Dennis DeTurck,et al.  Some regularity theorems in riemannian geometry , 1981 .

[12]  Stephen McCormick On a Minkowski-like inequality for asymptotically flat static manifolds , 2017, 1709.06550.

[13]  I. Holopainen Volume growth, Green’s functions, and parabolicity of ends , 1999 .

[14]  S. Borghini,et al.  Some sphere theorems in linear potential theory , 2017, Transactions of the American Mathematical Society.

[15]  Yi Wang,et al.  Inequalities for quermassintegrals on k-convex domains , 2013 .

[16]  T. Colding New monotonicity formulas for Ricci curvature and applications. I , 2011, 1111.4715.

[17]  V. Minerbe A Mass for ALF Manifolds , 2008, 0803.2873.

[18]  A. Pinamonti,et al.  Geometric aspects of p-capacitary potentials , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[19]  A. Hanson,et al.  SELF-DUAL SOLUTIONS TO EUCLIDEAN GRAVITY , 1979 .

[20]  P. Kronheimer A Torelli-type theorem for gravitational instantons , 1989 .

[21]  G. Huisken,et al.  Higher regularity of the inverse mean curvature flow , 2008 .

[22]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[23]  S. Brendle Sobolev Inequalities in Manifolds with Nonnegative Curvature , 2020, Communications on Pure and Applied Mathematics.

[24]  E. Gallego,et al.  Integral geometry and geometric inequalities in hyperbolic space , 2005 .

[25]  Ricci curvature and monotonicity for harmonic functions , 2012, 1209.4669.

[26]  S. Superiore,et al.  On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients , 1986 .

[27]  S. Brendle,et al.  A Minkowski Inequality for Hypersurfaces in the Anti‐de Sitter‐Schwarzschild Manifold , 2012, 1209.0669.

[28]  D. Valtorta,et al.  ON THE P-LAPLACE OPERATOR ON RIEMANNIAN MANIFOLDS , 2012, 1212.3422.

[29]  G. Huisken,et al.  The inverse mean curvature flow and the Riemannian Penrose Inequality , 2001 .

[30]  James Serrin,et al.  Local behavior of solutions of quasi-linear equations , 1964 .

[31]  O. Chodosh,et al.  Isoperimetric structure of asymptotically conical manifolds , 2015, 1503.05181.

[32]  V. Minerbe Rigidity for Multi-Taub-NUT metrics , 2009, 0910.5792.

[33]  V. Minerbe On the asymptotic geometry of gravitational instantons , 2010 .

[34]  Guohuan Qiu A family of higher-order isoperimetric inequalities , 2015 .

[35]  O. Kowalski Properties of hypersurfaces which are characteristic for spaces of constant curvature , 1972 .

[36]  John L. Lewis Capacitary functions in convex rings , 1977 .

[37]  V. Agostiniani,et al.  Monotonicity formulas in potential theory , 2016, Calculus of Variations and Partial Differential Equations.

[38]  Yong Wei On the Minkowski-type inequality for outward minimizing hypersurfaces in Schwarzschild space , 2017, 1701.04964.

[39]  David Abend,et al.  Maximum Principles In Differential Equations , 2016 .

[40]  I. Holopainen Nonlinear potential theory and quasiregular mappings on Riemannian manifolds , 1990 .

[41]  M. Rigoli,et al.  On the 1/H-flow by p-Laplace approximation: New estimates via fake distances under Ricci lower bounds , 2019, American Journal of Mathematics.

[42]  Xiaodong Wang,et al.  Local gradient estimate for p-harmonic functions on Riemannian manifolds , 2010, 1010.2889.

[43]  P. Kronheimer The construction of ALE spaces as hyper-Kähler quotients , 1989 .

[44]  F. Maggi Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory , 2012 .

[45]  Graham H. Williams,et al.  C1,1-regularity of constrained area minimizing hypersurfaces , 1991 .

[46]  Manuel Ritor'e Continuity of the isoperimetric profile of a complete Riemannian manifold under sectional curvature conditions , 2015, 1503.07014.

[47]  Frederico Girão,et al.  An Alexandrov–Fenchel-Type Inequality in Hyperbolic Space with an Application to a Penrose Inequality , 2012, 1209.0438.