Some tractable instances of interval data minmax regret problems

In this paper, we provide polynomial and pseudopolynomial algorithms for classes of particular instances of interval data minmax regret graph problems. These classes are defined using a parameter that measures the distance from well-known solvable instances. Tractable cases occur when the parameter is bounded by a constant.

[1]  A. Kasperski Minimizing maximal regret in the linear assignment problems with interval costs , .

[2]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.

[3]  Olivier Spanjaard,et al.  Some Tractable Instances of Interval Data Minmax Regret Problems: Bounded Distance from Triviality , 2008, SOFSEM.

[4]  Shlomo Moran,et al.  Non Deterministic Polynomial Optimization Problems and their Approximations , 1977, Theor. Comput. Sci..

[5]  Eugene L. Lawler,et al.  The Recognition of Series Parallel Digraphs , 1982, SIAM J. Comput..

[6]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[7]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[8]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[9]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[10]  Adam Kasperski,et al.  The robust shortest path problem in series-parallel multidigraphs with interval data , 2006, Oper. Res. Lett..

[11]  Albert Atserias,et al.  On digraph coloring problems and treewidth duality , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[12]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[13]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[14]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[15]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[16]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[17]  J. Kamburowski,et al.  OPTIMAL REDUCTION OF TWO-TERMINAL DIRECTED ACYCLIC GRAPHS * , 1992 .

[18]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[19]  Pascal Van Hentenryck,et al.  On the complexity of the robust spanning tree problem with interval data , 2004, Oper. Res. Lett..