A Nonlinear Finite Element Framework for Viscoelastic Beams Based on the High-Order Reddy Beam Theory

A weak form Galerkin finite element model for the nonlinear quasi-static and fully transient analysis of initially straight viscoelastic beams is developed using the kinematic assumptions of the third-order Reddy beam theory. The formulation assumes linear viscoelastic material properties and is applicable to problems involving small strains and moderate rotations. The viscoelastic constitutive equations are efficiently discretized using the trapezoidal rule in conjunction with a two-point recurrence formula. Locking is avoided through the use of standard low-order reduced integration elements as well through the employment of a family of elements constructed using high-polynomial order Lagrange and Hermite interpolation functions.

[1]  Fernando Cortés,et al.  Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models , 2007 .

[2]  Roger Ohayon,et al.  Finite element modelling of hybrid active–passive vibration damping of multilayer piezoelectric sandwich beams—part I: Formulation , 2001 .

[3]  T. C. Kennedy,et al.  Nonlinear viscoelastic analysis of composite plates and shells , 1998 .

[4]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[5]  V. Balamurugan,et al.  Finite Element Formulation and Active Vibration Control Study on Beams Using Smart Constrained Layer Damping (scld) Treatment , 2002 .

[6]  J. Reddy,et al.  A higher order beam finite element for bending and vibration problems , 1988 .

[7]  James M. Ricles,et al.  The Fractional Order Elastic-Viscoelastic Equations of Motion: Formulation and Solution Methods , 1998 .

[8]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[9]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[10]  Rakesh K. Kapania,et al.  Geometrically Nonlinear Shell Element for Hygrothermorheologically Simple Linear Viscoelastic Composites , 2000 .

[11]  Yavuz Başar,et al.  Refined shear-deformation models for composite laminates with finite rotations , 1993 .

[12]  Tzer-Ming Chen The hybrid Laplace transform/finite element method applied to the quasi‐static and dynamic analysis of viscoelastic Timoshenko beams , 1995 .

[13]  J. N. Reddy,et al.  Theory and analysis of elastic plates , 1999 .

[14]  J. Reddy ON LOCKING-FREE SHEAR DEFORMABLE BEAM FINITE ELEMENTS , 1997 .

[15]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[16]  Roger Ohayon,et al.  Finite element formulation of viscoelastic sandwich beams using fractional derivative operators , 2004 .

[17]  J. S. Lai,et al.  Creep and Relaxation of Nonlinear Viscoelastic Materials , 2011 .

[18]  D. Mctavish,et al.  Finite element modeling of linear viscoelastic structures: The GHM method. , 1992 .

[19]  G. J. Creus,et al.  Viscoelastic failure analysis of composite plates and shells , 2000 .

[20]  Mikael Enelund,et al.  Time-Domain Finite Element Analysis of Viscoelastic Structures with Fractional Derivatives Constitutive Relations , 1997 .

[21]  A. Bakker,et al.  3-D schapery representation for non-linear viscoelasticity and finite element implementation , 1996 .

[22]  Qian Chen,et al.  Integral finite element method for dynamical analysis of elastic–viscoelastic composite structures , 2000 .

[23]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[24]  Quasi-static and dynamic response of viscoelastic helical rods , 2004 .

[25]  J. Reddy,et al.  Nonlinear quasi‐static finite element formulations for viscoelastic Euler–Bernoulli and Timoshenko beams , 2010 .

[26]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[27]  D. V. Krevelen Properties of Polymers , 1990 .

[28]  A. Pálfalvi,et al.  A comparison of finite element formulations for dynamics of viscoelastic beams , 2008 .

[29]  V. Balamurugan,et al.  Active–passive hybrid damping in beams with enhanced smart constrained layer treatment , 2002 .

[30]  Nam-Ho Kim Introduction to Nonlinear Finite Element Analysis , 2014 .

[31]  Daniel J. Inman,et al.  Modeling of sandwich structures , 1998, Smart Structures.

[32]  R. Taylor,et al.  Thermomechanical analysis of viscoelastic solids , 1970 .

[33]  J. N. Reddy,et al.  Shear deformable beams and plates: relationships with classical solutions , 2000 .

[34]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[35]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[36]  J. N. Reddy,et al.  An Introduction to CONTINUUM MECHANICS with Applications , 2007 .

[37]  A. Tessler,et al.  Dynamics of thick viscoelastic beams , 1997 .

[38]  Richard W. Hamming,et al.  Numerical methods for scientists and engineers (2nd ed.) , 1986 .

[39]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .

[40]  Yalçin Aköz,et al.  The mixed finite element method for the quasi‐static and dynamic analysis of viscoelastic timoshenko beams , 1999 .

[41]  Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation , 2002 .