Bounding the Sets of Classical and Quantum Correlations in Networks.

We present a method that allows the study of classical and quantum correlations in networks with causally independent parties, such as the scenario underlying entanglement swapping. By imposing relaxations of factorization constraints in a form compatible with semidefinite programing, it enables the use of the Navascués-Pironio-Acín hierarchy in complex quantum networks. We first show how the technique successfully identifies correlations not attainable in the entanglement-swapping scenario. Then we use it to show how the nonlocal power of measurements can be activated in a network: there exist measuring devices that, despite being unable to generate nonlocal correlations in the standard Bell scenario, provide a classical-quantum separation in an entanglement swapping configuration.

[1]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[2]  Matthew F Pusey,et al.  Theory-independent limits on correlations from generalized Bayesian networks , 2014, 1405.2572.

[3]  Rafael Chaves,et al.  Causal hierarchy of multipartite Bell nonlocality , 2016, 1607.07666.

[4]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[5]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[6]  D. Janzing,et al.  A quantum advantage for inferring causal structure , 2015, Nature Physics.

[7]  R. Spekkens,et al.  Quantum common causes and quantum causal models , 2016, 1609.09487.

[8]  N. Gisin,et al.  Characterizing the nonlocal correlations created via entanglement swapping. , 2010, Physical review letters.

[9]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[10]  A. Falcon Physics I.1 , 2018 .

[11]  B. M. Fulk MATH , 1992 .

[12]  Ram Ramamoorthy,et al.  Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence , 2014 .

[13]  Peter Wittek,et al.  Efficient Device-Independent Entanglement Detection for Multipartite Systems , 2016, 1612.08551.

[14]  W Vogel,et al.  Inseparability criteria for continuous bipartite quantum states. , 2005, Physical review letters.

[15]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[16]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[17]  V. Scarani,et al.  Quantum networks reveal quantum nonlocality. , 2010, Nature communications.

[18]  J. Pienaar,et al.  Which causal structures might support a quantum–classical gap? , 2016, 1606.07798.

[19]  T. Fritz Beyond Bell's theorem: correlation scenarios , 2012, 1206.5115.

[20]  V. Scarani,et al.  More randomness from the same data , 2013, 1309.3894.

[21]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[22]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[23]  Stefano Pironio,et al.  Violation of local realism versus detection efficiency , 2003 .

[24]  Peter Wittek,et al.  Algorithm 950 , 2013, ACM Trans. Math. Softw..

[25]  Č. Brukner,et al.  A graph-separation theorem for quantum causal models , 2014, 1406.0430.

[26]  Christian Majenz,et al.  Information–theoretic implications of quantum causal structures , 2014, Nature Communications.

[27]  Fabio Costa,et al.  Quantum causal modelling , 2015, 1512.07106.

[28]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[29]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[30]  C. J. Wood,et al.  The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning , 2012, 1208.4119.

[31]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[32]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[33]  Craig Boutilier,et al.  Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence , 2000 .

[34]  Rafael Chaves,et al.  Polynomial Bell Inequalities. , 2015, Physical review letters.

[35]  Robert W. Spekkens,et al.  The Inflation Technique for Causal Inference with Latent Variables , 2016, Journal of Causal Inference.

[36]  R Chaves,et al.  Unifying framework for relaxations of the causal assumptions in Bell's theorem. , 2014, Physical review letters.

[37]  N. Gisin,et al.  Bilocal versus nonbilocal correlations in entanglement-swapping experiments , 2011, 1112.4502.

[38]  Fabio Sciarrino,et al.  Quantum violation of an instrumental test , 2018, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[39]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.