Nanoscale highly selective plasmonic quad wavelength demultiplexer based on a metal-insulator-metal

Abstract A nanoscale plasmonic demultiplexer based on a plasmonic slot resonator is proposed. The device is optimized for high selectivity and minimum FWHM. The device is capable of achieving a demultiplexing FWHM of 9.8 nm for each channel with a high output transmission. The structure is optimized for double and quad channel demultiplexing near the 1550 nm. The proposed structure is simple, can be easily fabricated and can be cascaded for a large number of channel demultiplexing.

[1]  Sergey I. Bozhevolnyi,et al.  Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides , 2011 .

[2]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[3]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[4]  Mohamed A. Swillam,et al.  Efficient broadband energy transfer via momentum matching at hybrid junctions of guided-waves , 2012 .

[5]  Zhiping Zhou,et al.  Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities , 2011 .

[6]  Emmanouil E. Kriezis,et al.  Liquid–crystal tunable waveguides for integrated plasmonic components , 2013 .

[7]  Mohamed A Swillam,et al.  Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers. , 2010, Optics express.

[8]  Qihuang Gong,et al.  Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. , 2011, Optics express.

[9]  Hong Wei,et al.  Cascaded logic gates in nanophotonic plasmon networks , 2011, Nature communications.

[10]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[11]  E. Kriezis,et al.  Liquid crystal-based dielectric loaded surface plasmon polariton optical switches , 2011 .

[12]  Sergey I. Bozhevolnyi,et al.  Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides , 2013, Scientific Reports.

[13]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[14]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[15]  Mohamed A. Swillam,et al.  Resonance-based integrated plasmonic nanosensor for lab-on-chip applications , 2013 .

[16]  Dimitrios C. Zografopoulos,et al.  Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators , 2013 .

[17]  Xueming Liu,et al.  Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. , 2011, Optics express.

[18]  M. A. Swillam,et al.  Feedback Effects in Plasmonic Slot Waveguides Examined Using a Closed Form Model , 2012, IEEE Photonics Technology Letters.

[19]  Xu Guang Huang,et al.  A nanometeric plasmonic wavelength demultiplexer based on a T-shaped waveguide structure with double teeth-shaped waveguide at telecommunication wavelengths , 2010 .

[20]  Xu Guang Huang,et al.  A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. , 2010, Optics express.

[21]  M. C. Hoffmann,et al.  Light-Induced Superconductivity in a Stripe-Ordered Cuprate , 2011, Science.

[22]  Mohamed A. Swillam,et al.  Submicron 1xN Ultra Wideband MIM Plasmonic Power Splitters , 2014, Journal of Lightwave Technology.

[23]  Nikos Pleros,et al.  Active plasmonics in WDM traffic switching applications , 2012, Scientific Reports.

[24]  Mohamed A. Swillam,et al.  Integrated Metal-Insulator-Metal Plasmonic Nano Resonator: an Analytical Approach , 2013 .

[25]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.