Evaluation of stress intensity factors using finite elements

The paper describes a suitability of Virtual Crack Extension (VCE) method for numerical simulation of crack propagation under mixed mode loading. The suitability of VCE method was determined using The Compact-Tension-Shear (CTS), which is subjected to fracture Mode I, Mode II or mixed mode (Mode I + Mode II) loading. In mixed mode the crack kinks when fracture crack growth occurs. Kink angle is determined with VCE method, which is an energy method, maximum tangential stress (MTS) criterion, strain energy density (SED) criterion and experimental results. Determination of crack propagation angle using MTS and SED criterion is based in regard to the stress intensity factors KI and KII. Stress intensity factors are determined using the maximum energy release rate theory using complex J integral, crack opening displacement method and method of stresses extrapolation. Bigger is the rate between KII and KI, crack path, determined with VCE method, propagates more slowly to the kink angle, determined with experiment. The computational results show that the VCE method is suitable for crack propagation, when KI around the crack tip is dominant. In case where KII is dominant, crack does not kink immediately as in other two criteria. When KII dominates around a crack tip, MTS criterion is the most appropriate for determination of kink angle.