On the convergence of multipoint Padé-type approximants and quadrature formulas associated with the unit circle

We study the convergence of rational interpolants with prescribed poles on the unit circle to the Herglotz-Riesz transform of a complex measure supported on [−π, π]. As a consequence, quadrature formulas arise which integrate exactly certain rational functions. Estimates of the rate of convergence of these quadrature formulas are also included.

[1]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[2]  Adhemar Bultheel,et al.  Orthogonal rational functions and quadrature on the unit circle , 2005, Numerical Algorithms.

[3]  E. Rakhmanov,et al.  EQUILIBRIUM MEASURE AND THE DISTRIBUTION OF ZEROS OF EXTREMAL POLYNOMIALS , 1986 .

[4]  W. J. Thron,et al.  Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .

[5]  M. M. Djrbashian A Survey on the Theory of Orthogonal System and Some Open Problems , 1990 .

[6]  Walter Gautschi Gauss-type Quadrature Rules for Rational Functions , 1993 .

[7]  Pablo González-Vera,et al.  Some results about numerical quadrature on the unit circle , 1996, Adv. Comput. Math..

[8]  Orthogonality and boundary interpolation , 1994 .

[9]  A. Bultheel,et al.  Quadrature formulas on the unit circle based on rational functions , 1994 .

[10]  P. González-Vera,et al.  On the Convergence of Quadrature Formulas Connected with Multipoint Padé-Type Approximation , 1996 .

[11]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[12]  E. Rakhmanov,et al.  On the Asymptotics of the Ratio of Orthogonal Polynomials. Ii , 1977 .

[13]  Attila Máté,et al.  Remarks on E. A. Rahmanov's paper “on the asymptotics of the ratio of orthogonal polynomials” , 1982 .

[14]  Hans Wallin,et al.  Potential theory and approximation of analytic functions by rational interpolation , 1979 .

[15]  Francisco Marcellán,et al.  Orthogonal Polynomials and Rational Modifications of Measures , 1993, Canadian Journal of Mathematics.

[16]  Gaussian Integration for Complex Weight Functions , 1978 .

[17]  A. Bultheel,et al.  Quadrature Formulas on the Unit Circle and Two-Point Padé Approximation , 1994 .

[18]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[19]  J. R. IllGonz A NOTE ON GENERALIZED QUADRATURE FORMULAS OF GAUSS-JACOBI TYPE , 1984 .

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  V. Totik,et al.  Strong and weak convergence of orthogonal polynomials , 1987 .

[22]  Walter Van Assche,et al.  Quadrature formulas based on rational interpolation , 1993, math/9307221.