Crustal vertical deformation response to different spatial scales of GRACE and GCMs surface loading

[1]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[2]  T. van Dam,et al.  Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements , 1987 .

[3]  Mike P. Stewart,et al.  Aliased tidal signatures in continuous GPS height time series , 2003 .

[4]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[5]  Xavier Collilieux,et al.  Nontidal ocean loading: amplitudes and potential effects in GPS height time series , 2012, Journal of Geodesy.

[6]  Peter Steigenberger,et al.  Vertical deformations from homogeneously processed GRACE and global GPS long-term series , 2011 .

[7]  Peter Steigenberger,et al.  Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series , 2009 .

[8]  Matthew Rodell,et al.  Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations , 2005 .

[9]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[10]  Felix W. Landerer,et al.  GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon , 2015 .

[11]  Simon D. P. Williams,et al.  Non‐tidal ocean loading effects on geodetic GPS heights , 2011 .

[12]  Guillaume Ramillien,et al.  Detecting hydrologic deformation using GRACE and GPS , 2009 .

[13]  Jean-François Crétaux,et al.  Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy , 2001 .

[14]  Xiaoli Ding,et al.  Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network , 2009 .

[15]  G. Blewitt,et al.  A New Global Mode of Earth Deformation: Seasonal Cycle Detected , 2001, Science.

[16]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[17]  Zhao Li,et al.  Comparative analysis of different environmental loading methods and their impacts on the GPS height time series , 2013, Journal of Geodesy.

[18]  Grzegorz Michalak,et al.  GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005 , 2012 .

[19]  Xiaoli Ding,et al.  The tidal displacement field at Earth's surface determined using global GPS observations , 2013 .

[20]  Alireza Amiri-Simkooei,et al.  On the nature of GPS draconitic year periodic pattern in multivariate position time series , 2013 .

[21]  Pedro Elosegui,et al.  Climate‐driven deformation of the solid Earth from GRACE and GPS , 2004 .

[22]  Jim R. Ray,et al.  Sub-daily alias and draconitic errors in the IGS orbits , 2011, GPS Solutions.

[23]  M. Cheng,et al.  Geocenter Variations from Analysis of SLR Data , 2013 .

[24]  J. Wahr,et al.  A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe , 2007 .

[25]  Hiroshi Munekane,et al.  A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning , 2005 .

[26]  R. Nikolaidis Observation of geodetic and seismic deformation with the Global Positioning System , 2002 .

[27]  Jeffrey T. Freymueller,et al.  Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements , 2012 .

[28]  M. Zhong,et al.  Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes , 2009 .

[29]  Carl Wunsch,et al.  The global frequency-wavenumber spectrum of oceanic variability estimated from TOPEX/POSEIDON altimetric measurements , 1995 .

[30]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[31]  Derek D. Lichti,et al.  Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares , 2005 .

[32]  Mike P. Stewart,et al.  GPS height time series: Short‐period origins of spurious long‐period signals , 2007 .

[33]  V. Dehant,et al.  Atmospheric Angular Momentum Time-Series: Characterization of their Internal Noise and Creation of a Combined Series , 2004 .

[34]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[35]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[36]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[37]  Juliette Legrand,et al.  Assessing the precision in loading estimates by geodetic techniques in Southern Europe , 2013 .

[38]  Y. Bock,et al.  Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .

[39]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[40]  Paul Tregoning,et al.  Atmospheric effects and spurious signals in GPS analyses , 2009 .

[41]  Peter J. Clarke,et al.  Subdaily signals in GPS observations and their effect at semiannual and annual periods , 2008 .

[42]  Weiping Jiang,et al.  Effects on noise properties of GPS time series caused by higher-order ionospheric corrections , 2014 .

[43]  Xavier Collilieux,et al.  Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models , 2012 .

[44]  Benjamin F. Chao,et al.  Analysis of tidal signals in surface displacement measured by a dense continuous GPS array , 2012 .

[45]  P. Tavella,et al.  A revisited three-cornered hat method for estimating frequency standard instability , 1993 .

[46]  J. Ray,et al.  Geocenter motion and its geodetic and geophysical implications , 2012 .