Robust control of piezostage for nanoscale three-dimensional images acquisition

Piezoelectric drivers are widely used in nanoscale image acquisition systems. A source of performance degradation of these drivers is hysteresis, which introduces low rate noise and causes a slow continuous drift, decreasing the quality of scanned images. In this paper a sliding mode control policy, based on an estimator of the perturbation due to hysteresis, is applied to the control of a piezostage in a three dimensional images acquisition system, in order to improve control performances and final scanning results. The presented solution has been experimentally tested and compared with the Proportional-Integrative-Derivative (PID) controllers provided with the piezoelectric acquisition system, showing a noticeable improvement both in the piezostage behavior and in the images quality.

[1]  J. L Maddocks,et al.  Scanning probe microscopy , 1992, The Lancet.

[2]  Seung-Woo Kim,et al.  Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control , 1994 .

[3]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[4]  M. Burgess,et al.  Ground penetrating radar , 1997 .

[5]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[6]  W. Guo,et al.  A high bandwidth piezoelectric suspension for high track density magnetic data storage devices , 1998 .

[7]  B. Bouma,et al.  Handbook of Optical Coherence Tomography , 2001 .

[8]  P. Lacomme,et al.  Synthetic Aperture Radar , 2001 .

[9]  A. Fercher,et al.  Full range complex spectral optical coherence tomography technique in eye imaging. , 2002, Optics letters.

[10]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[11]  T.-J. Yeh,et al.  Modeling and Identification of Hysteresis in Piezoelectric Actuators , 2006 .

[12]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[13]  Lining Sun,et al.  A hysteresis compensation method of piezoelectric actuator: Model, identification and control , 2009 .

[14]  Qingsong Xu,et al.  Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator , 2010, IEEE Transactions on Control Systems Technology.

[15]  G. Ippoliti,et al.  Sliding mode control of permanent Magnet Synchronous Generators for wind turbines , 2011, IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society.

[16]  Marco Farina,et al.  USING CORRELATION MAPS IN A WIDE-BAND MICROWAVE GPR , 2011 .

[17]  Hans Butler,et al.  Position Control in Lithographic Equipment [Applications of Control] , 2011, IEEE Control Systems.

[18]  Tullio Rozzi,et al.  Disentangling time in a near-field approach to scanning probe microscopy. , 2011, Nanoscale.

[19]  Ting-Wei Su,et al.  Lensfree On-Chip Microscopy and Tomography for Biomedical Applications , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  G. Ippoliti,et al.  Sliding mode control based robust observer of aerodynamic torque for variable-speed wind turbines , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[21]  Maria Letizia Corradini,et al.  An aerodynamic torque observer for the robust control of variable-speed wind turbines , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[22]  Marco Farina,et al.  OPTICAL FIBER EXTRINSIC MICRO-CAVITY SCANNING MICROSCOPY , 2013 .

[23]  H. Butler,et al.  Position control in lithographic equipment , 2013 .

[24]  S. O. Reza Moheimani,et al.  Control Techniques for Increasing the Scan Speed and Minimizing Image Artifacts in Tapping-Mode Atomic Force Microscopy: Toward Video-Rate Nanoscale Imaging , 2013, IEEE Control Systems.

[25]  Maria Letizia Corradini,et al.  A Quasi‐Sliding Mode Observer‐based Controller for PMSM Drives , 2013 .

[26]  Y. Shan,et al.  Design and Control for High-Speed Nanopositioning: Serial-Kinematic Nanopositioners and Repetitive Control for Nanofabrication , 2013, IEEE Control Systems.

[27]  Maria Letizia Corradini,et al.  Fully sensorless robust control of variable-speed wind turbines for efficiency maximization , 2013, Autom..

[28]  G. Ippoliti,et al.  Control of variable speed wind energy conversion systems by a discrete-time sliding mode approach , 2013, 2013 IEEE International Conference on Mechatronics (ICM).

[29]  R. Hillenbrand,et al.  Synthetic optical holography for rapid nanoimaging , 2014, Nature Communications.

[30]  Luigino Criante,et al.  Optical microcavity scanning 3D tomography. , 2014, Optics letters.

[31]  Marco Farina,et al.  Synthetic holography based on scanning microcavity , 2015 .