AbstractAlon, Babai and Suzuki proved the following theorem:
Let p be a prime and let K, L be two disjoint subsets of {0, 1, ... , p − 1}. Let |K| = r, |L| = s, and assume r(s − r + 1) ≤ p − 1 and n ≥ s + krwhere kris the maximal element of K. Let
$$\mathcal{F}$$
be a family of subsets of an n-element set. Suppose that
(i) |F| ∈ K (mod p) for each F ∈
$$\mathcal{F}$$
;(ii) |E ⋂ F| ∈ L (mod p) for each pair of distinct sets E, F ∈
$$\mathcal{F}$$
.
Then
$$\left| \mathcal{F} \right| \leqslant (_{{\kern 1pt} s}^{{\kern 1pt} n} ) + (_{{\kern 1pt} s - 1}^{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} n} ) + \cdot \cdot \cdot + (_{{\kern 1pt} s - r + 1}^{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} n} ).$$
They conjectured that the condition that r(s − r + 1) ≤ p − 1 in the theorem can be dropped and the same conclusion should hold. In this paper we prove that the same conclusion holds if the two conditions in the theorem, i.e. r(s − r + 1) ≤ p − 1 and n ≥ s + kr are replaced by a single more relaxed condition 2s − r ≤ n.
[1]
Peter Frankl,et al.
Intersection theorems with geometric consequences
,
1981,
Comb..
[2]
Peter Frankl,et al.
Intersection theorems and mod p rank of inclusion matrices
,
1990,
J. Comb. Theory, Ser. A.
[3]
Noga Alon,et al.
Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems
,
1991,
J. Comb. Theory, Ser. A.
[4]
Hunter S. Snevily.
On Generalizations of the deBruijn - Erdös Theorem
,
1994,
J. Comb. Theory, Ser. A.
[5]
Hunter S. Snevily.
On generalizations of the deBruijn-Erdo¨s theorem
,
1994
.
[6]
G. V. Ramanan,et al.
Proof of a Conjecture of Frankl and Füredi
,
1996,
J. Comb. Theory, Ser. A.
[7]
Jin Qian,et al.
Frankl-Füredi Type Inequalities for Polynomial Semi-lattices
,
1997,
Electron. J. Comb..
[8]
D. K. Ray-Chaudhuri,et al.
Extremal case of Frankl–Ray-Chaudhuri–Wilson Inequality
,
2001
.