When the brain plays music: auditory–motor interactions in music perception and production

[1]  G. Rizzolatti,et al.  The mirror neuron system. , 2009, Archives of neurology.

[2]  Robert J. Zatorre,et al.  Moving on Time: Brain Network for Auditory-Motor Synchronization is Modulated by Rhythm Complexity and Musical Training , 2008, Journal of Cognitive Neuroscience.

[3]  Robert J Zatorre,et al.  Neural specializations for speech and pitch: moving beyond the dichotomies , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  C. Stevens,et al.  Sweet Anticipation: Music and the Psychology of Expectation, by David Huron . Cambridge, Massachusetts: MIT Press, 2006 , 2007 .

[5]  J. Rothwell,et al.  Motorcortical Excitability and Synaptic Plasticity Is Enhanced in Professional Musicians , 2007, The Journal of Neuroscience.

[6]  Matthew Brett,et al.  Rhythm and Beat Perception in Motor Areas of the Brain , 2007, Journal of Cognitive Neuroscience.

[7]  Michael J. Martinez,et al.  Activation of premotor vocal areas during musical discrimination , 2007, Brain and Cognition.

[8]  E. Saltzman,et al.  Action Representation of Sound: Audiomotor Recognition Network While Listening to Newly Acquired Actions , 2007, The Journal of Neuroscience.

[9]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[10]  Caroline Palmer,et al.  Cognitive and biomechanical influences in pianists’ finger tapping , 2007, Experimental Brain Research.

[11]  C. Fiebach,et al.  Dynamic Anticipatory Processing of Hierarchical Sequential Events: a Common Role for Broca's Area and Ventral Premotor Cortex Across Domains? , 2006, Cortex.

[12]  A. Bastian Learning to predict the future: the cerebellum adapts feedforward movement control , 2006, Current Opinion in Neurobiology.

[13]  Istvan Molnar-Szakacs,et al.  Music and mirror neurons: from motion to 'e'motion. , 2006, Social cognitive and affective neuroscience.

[14]  Robert J. Zatorre,et al.  Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms , 2006, NeuroImage.

[15]  M. Petrides,et al.  Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey , 2006, The Journal of comparative neurology.

[16]  Aniruddh D. Patel Musical Rhythm, Linguistic Rhythm, and Human Evolution , 2006 .

[17]  E Altenmüller,et al.  Cross‐modal plasticity of the motor cortex while listening to a rehearsed musical piece , 2006, The European journal of neuroscience.

[18]  E. Koechlin,et al.  Broca's Area and the Hierarchical Organization of Human Behavior , 2006, Neuron.

[19]  Jun Tanji,et al.  Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. , 2006, Journal of neurophysiology.

[20]  R. Jackendoff,et al.  The capacity for music: What is it, and what’s special about it? , 2006, Cognition.

[21]  M. Woollacott,et al.  Accuracy and underlying mechanisms of shifting movements in cellists , 2006, Experimental Brain Research.

[22]  Hans-Jochen Heinze,et al.  Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction , 2006, NeuroImage.

[23]  Caroline Palmer,et al.  Effects of hearing the past, present, or future during music performance , 2006, Perception & psychophysics.

[24]  B. Gelder Towards the neurobiology of emotional body language , 2006, Nature Reviews Neuroscience.

[25]  A. Friederici,et al.  Investigating emotion with music: An fMRI study , 2006, Human brain mapping.

[26]  M. Davare,et al.  Behavioral / Systems / Cognitive Dissociating the Role of Ventral and Dorsal Premotor Cortex in Precision Grasping , 2018 .

[27]  S. Swinnen,et al.  Dynamics of hemispheric specialization and integration in the context of motor control , 2006, Nature Reviews Neuroscience.

[28]  Tal Savion-Lemieux,et al.  The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning , 2006, Experimental Brain Research.

[29]  R. Wise,et al.  Sounds do-able: auditory–motor transformations and the posterior temporal plane , 2005, Trends in Neurosciences.

[30]  L. Jäncke,et al.  A Network for Sensory‐Motor Integration , 2005, Annals of the New York Academy of Sciences.

[31]  A. Graybiel The basal ganglia: learning new tricks and loving it , 2005, Current Opinion in Neurobiology.

[32]  Catalin V. Buhusi,et al.  What makes us tick? Functional and neural mechanisms of interval timing , 2005, Nature Reviews Neuroscience.

[33]  Alan Wing,et al.  Force related activations in rhythmic sequence production , 2005, NeuroImage.

[34]  M. Schönwiesner,et al.  Hemispheric asymmetry for spectral and temporal processing in the human antero‐lateral auditory belt cortex , 2005, The European journal of neuroscience.

[35]  Stefan Skare,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Extensive Blockinpiano Blockinpracticing Blockinhas Blockinregionally Specific Blockineffects Blockinon Blockinwhite Blockinmatter Blockindevelopment , 2022 .

[36]  D. Bendor,et al.  The neuronal representation of pitch in primate auditory cortex , 2005, Nature.

[37]  Robert J. Zatorre,et al.  Conditional Associative Memory for Musical Stimuli in Nonmusicians: Implications for Absolute Pitch , 2005, The Journal of Neuroscience.

[38]  Patrik N. Juslin From mimesis to catharsis , 2005 .

[39]  Robert J. Zatorre,et al.  Mental Concerts: Musical Imagery and Auditory Cortex , 2005, Neuron.

[40]  Julien Doyon,et al.  Cerebellum and M1 interaction during early learning of timed motor sequences , 2005, NeuroImage.

[41]  Guido Nolte,et al.  Shared Brain Areas But Not Functional Connections Controlling Movement Timing and Order , 2005, The Journal of Neuroscience.

[42]  Angela R Laird,et al.  Cerebellum and auditory function: An ALE meta‐analysis of functional neuroimaging studies , 2005, Human brain mapping.

[43]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  S. Koelsch Neural substrates of processing syntax and semantics in music , 2005, Current Opinion in Neurobiology.

[45]  Stephen M. Rao,et al.  Distinct neural systems underlie learning visuomotor and spatial representations of motor skills , 2005, Human brain mapping.

[46]  A. Boemio,et al.  Hierarchical and asymmetric temporal sensitivity in human auditory cortices , 2005, Nature Neuroscience.

[47]  A. R. Jennings,et al.  Analysis of the spectral envelope of sounds by the human brain , 2005, NeuroImage.

[48]  P. Strick,et al.  Frontal Lobe Inputs to the Digit Representations of the Motor Areas on the Lateral Surface of the Hemisphere , 2005, The Journal of Neuroscience.

[49]  Peter Erhard,et al.  Transmodal Sensorimotor Networks during Action Observation in Professional Pianists , 2005, Journal of Cognitive Neuroscience.

[50]  Aniruddh D. Patel,et al.  The influence of metricality and modality on synchronization with a beat , 2005, Experimental Brain Research.

[51]  P. A. Lewis,et al.  Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping , 2004, Neuropsychologia.

[52]  Kae Nakamura,et al.  Emergence of rhythm during motor learning , 2004, Trends in Cognitive Sciences.

[53]  John F. Kalaska,et al.  Neural correlates of mental rehearsal in dorsal premotor cortex , 2004, Nature.

[54]  Andreas Daffertshofer,et al.  Keeping with the beat: movement trajectories contribute to movement timing , 2004, Experimental Brain Research.

[55]  B. Repp,et al.  Rhythmic movement is attracted more strongly to auditory than to visual rhythms , 2004, Psychological research.

[56]  Andrew J Oxenham,et al.  A Neural Representation of Pitch Salience in Nonprimary Human Auditory Cortex Revealed with Functional Magnetic Resonance Imaging , 2004, The Journal of Neuroscience.

[57]  D. Buonomano,et al.  The neural basis of temporal processing. , 2004, Annual review of neuroscience.

[58]  T. Wüstenberg,et al.  Long-term training affects cerebellar processing in skilled keyboard players , 2004, Neuroreport.

[59]  Hans Forssberg,et al.  Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences , 2004, The European journal of neuroscience.

[60]  Sophie K. Scott,et al.  The functional neuroanatomy of prelexical processing in speech perception , 2004, Cognition.

[61]  A Thron,et al.  Playing piano in the mind--an fMRI study on music imagery and performance in pianists. , 2004, Brain research. Cognitive brain research.

[62]  D. Poeppel,et al.  Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language , 2004, Cognition.

[63]  R. Zatorre,et al.  Sensitivity to Auditory Object Features in Human Temporal Neocortex , 2004, The Journal of Neuroscience.

[64]  R. Ivry,et al.  The neural representation of time , 2004, Current Opinion in Neurobiology.

[65]  M. Rushworth,et al.  Organization of action sequences and the role of the pre-SMA. , 2004, Journal of neurophysiology.

[66]  Roland R. Lee,et al.  Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. , 2003, Brain : a journal of neurology.

[67]  J. Tanji,et al.  Functional specialization in dorsal and ventral premotor areas. , 2004, Progress in brain research.

[68]  S. P. Wise,et al.  Primate frontal cortex: neuronal activity following attentional versus intentional cues , 2004, Experimental Brain Research.

[69]  James R. Bloedel,et al.  On-line compensation for perturbations of a reaching movement is cerebellar dependent: support for the task dependency hypothesis , 2004, Experimental Brain Research.

[70]  Leslie G. Ungerleider,et al.  Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning , 2003, Neuropsychologia.

[71]  T. Paus,et al.  Seeing and hearing speech excites the motor system involved in speech production , 2003, Neuropsychologia.

[72]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[73]  M. Thaut,et al.  Neural Basis of Rhythmic Timing Networks in the Human Brain , 2003, Annals of the New York Academy of Sciences.

[74]  D. V. Cramon,et al.  Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies , 2003, NeuroImage.

[75]  M. Bangert,et al.  Mapping perception to action in piano practice: a longitudinal DC-EEG study , 2003, BMC Neuroscience.

[76]  G. Schlaug,et al.  Brain Structures Differ between Musicians and Non-Musicians , 2003, The Journal of Neuroscience.

[77]  Caroline Palmer,et al.  Incremental planning in sequence production. , 2003, Psychological review.

[78]  G. Schlaug,et al.  Cerebellar volume of musicians. , 2003, Cerebral cortex.

[79]  L. Fogassi,et al.  Audiovisual mirror neurons and action recognition , 2003, Experimental Brain Research.

[80]  G. Hickok,et al.  Auditory–Motor Interaction Revealed by fMRI: Speech, Music, and Working Memory in Area Spt , 2003 .

[81]  Scott T. Grafton,et al.  Swinging in the brain: shared neural substrates for behaviors related to sequencing and music , 2003, Nature Neuroscience.

[82]  M. Coltheart,et al.  Modularity of music processing , 2003, Nature Neuroscience.

[83]  H. Zelaznik,et al.  Disrupted Timing of Discontinuous But Not Continuous Movements by Cerebellar Lesions , 2003, Science.

[84]  R. Miall,et al.  Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging , 2003, Current Opinion in Neurobiology.

[85]  M. Mauk,et al.  What the cerebellum computes , 2003, Trends in Neurosciences.

[86]  S. Scott,et al.  The neuroanatomical and functional organization of speech perception , 2003, Trends in Neurosciences.

[87]  G. Luppino,et al.  ß Federation of European Neuroscience Societies Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey , 2022 .

[88]  K. Jellinger Principles of frontal lobe function , 2003 .

[89]  D. C. Essen Surface-based Comparisons of Macaque and Human Cortical Organization In : From Monkey Brain to Human Brain , 2003 .

[90]  A. Fuchs,et al.  Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI , 2002 .

[91]  H. Zelaznik,et al.  The Cerebellum and Event Timing , 2002, Annals of the New York Academy of Sciences.

[92]  R. Patterson,et al.  The Processing of Temporal Pitch and Melody Information in Auditory Cortex , 2002, Neuron.

[93]  Dylan F. Cooke,et al.  The Cortical Control of Movement Revisited , 2002, Neuron.

[94]  Katsuyuki Sakai,et al.  Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. , 2002, Journal of neurophysiology.

[95]  D. Stuss,et al.  Principles of frontal lobe function , 2002 .

[96]  G. Rizzolatti,et al.  Hearing Sounds, Understanding Actions: Action Representation in Mirror Neurons , 2002, Science.

[97]  Jeff H. Duyn,et al.  Cortical Systems Associated with Covert Music Rehearsal , 2002, NeuroImage.

[98]  M. Jones,et al.  Temporal Aspects of Stimulus-Driven Attending in Dynamic Arrays , 2002, Psychological science.

[99]  M. Scherg,et al.  Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians , 2002, Nature Neuroscience.

[100]  T. Griffiths,et al.  The planum temporale as a computational hub , 2002, Trends in Neurosciences.

[101]  G. Rizzolatti,et al.  Motor and cognitive functions of the ventral premotor cortex , 2002, Current Opinion in Neurobiology.

[102]  Kae Nakamura,et al.  Central mechanisms of motor skill learning , 2002, Current Opinion in Neurobiology.

[103]  J. Doyon,et al.  Dynamic Cortical and Subcortical Networks in Learning and Delayed Recall of Timed Motor Sequences , 2002, The Journal of Neuroscience.

[104]  A. Wing Voluntary Timing and Brain Function: An Information Processing Approach , 2002, Brain and Cognition.

[105]  Edward W. Large,et al.  Tracking simple and complex sequences , 2002, Psychological research.

[106]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[107]  A. Fuchs,et al.  Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Functional magnetic resonance imaging. , 2002, Human brain mapping.

[108]  Edward W. Large,et al.  Perceiving temporal regularity in music , 2002, Cogn. Sci..

[109]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[110]  R. E. Passingham,et al.  Changes in the Human Brain during Rhythm Learning , 2001, Journal of Cognitive Neuroscience.

[111]  D. Hoffman,et al.  Direction of action is represented in the ventral premotor cortex , 2001, Nature Neuroscience.

[112]  R. Zatorre,et al.  Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[113]  G. Rizzolatti,et al.  Neurophysiological mechanisms underlying the understanding and imitation of action , 2001, Nature Reviews Neuroscience.

[114]  R. Shadmehr,et al.  Long-term adaptation to dynamics of reaching movements: a PET study , 2001, Experimental Brain Research.

[115]  S Rozzi,et al.  Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque , 2001, The European journal of neuroscience.

[116]  Jens Haueisen,et al.  Involuntary Motor Activity in Pianists Evoked by Music Perception , 2001, Journal of Cognitive Neuroscience.

[117]  Carol L. Krumhansl,et al.  Tapping to Ragtime: Cues to Pulse Finding , 2001 .

[118]  Stephen M. Rao,et al.  The evolution of brain activation during temporal processing , 2001, Nature Neuroscience.

[119]  G. Rizzolatti,et al.  Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study , 2001, The European journal of neuroscience.

[120]  J. Sloboda,et al.  Music and emotion: Theory and research , 2001 .

[121]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[122]  C. Drake,et al.  Tapping in Time with Mechanically and Expressively Performed Music , 2000 .

[123]  R. Zatorre,et al.  ‘What’, ‘where’ and ‘how’ in auditory cortex , 2000, Nature Neuroscience.

[124]  J. Tanji,et al.  Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. , 2000, Journal of neurophysiology.

[125]  L. Jäncke,et al.  Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. , 2000, Brain research. Cognitive brain research.

[126]  L. Jäncke,et al.  Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. , 2000, Brain research. Cognitive brain research.

[127]  S. Blumstein,et al.  The Role of Segmentation in Phonological Processing: An fMRI Investigation , 2000, Journal of Cognitive Neuroscience.

[128]  E. T. Possing,et al.  Human temporal lobe activation by speech and nonspeech sounds. , 2000, Cerebral cortex.

[129]  C. Krumhansl Rhythm and pitch in music cognition. , 2000, Psychological bulletin.

[130]  R. Zatorre,et al.  Functional specificity in the right human auditory cortex for perceiving pitch direction. , 2000, Brain : a journal of neurology.

[131]  O Hikosaka,et al.  Neural Representation of a Rhythm Depends on Its Interval Ratio , 1999, The Journal of Neuroscience.

[132]  B. Repp Effects of Auditory Feedback Deprivation on Expressive Piano Performance , 1999 .

[133]  J. Kaas,et al.  Auditory processing in primate cerebral cortex , 1999, Current Opinion in Neurobiology.

[134]  D. V. von Cramon,et al.  Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals , 1999, Experimental Brain Research.

[135]  R. Zatorre,et al.  The role of auditory cortex in retention of rhythmic patterns as studied in patients with temporal lobe removals including Heschls gyrus , 1999, Neuropsychologia.

[136]  D. Harrington,et al.  Neural Underpinnings of Temporal Processing: Α Review of Focal Lesion, Pharmacological, and Functional Imaging Research , 1999, Reviews in the neurosciences.

[137]  Alan C. Evans,et al.  Cerebellar Contributions to Motor Timing: A PET Study of Auditory and Visual Rhythm Reproduction , 1998, Journal of Cognitive Neuroscience.

[138]  W. T. Thach A Role for the Cerebellum in Learning Movement Coordination , 1998, Neurobiology of Learning and Memory.

[139]  Alan C. Evans,et al.  Event-related fMRI of the auditory cortex. , 1998, NeuroImage.

[140]  R. Passingham,et al.  Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. , 1998, Brain : a journal of neurology.

[141]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[142]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[143]  C. Krumhansl An exploratory study of musical emotions and psychophysiology. , 1997, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[144]  M. Thaut,et al.  Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation , 1997, Journal of the Neurological Sciences.

[145]  G. Rizzolatti,et al.  Object representation in the ventral premotor cortex (area F5) of the monkey. , 1997, Journal of neurophysiology.

[146]  J. Binder,et al.  Distributed Neural Systems Underlying the Timing of Movements , 1997, The Journal of Neuroscience.

[147]  M. Thaut,et al.  Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease. , 1997, Journal of neurology, neurosurgery, and psychiatry.

[148]  Alan C. Evans,et al.  Modulation of Cerebral Blood Flow in the Human Auditory Cortex During Speech: Role of Motor‐to‐sensory Discharges , 1996, European Journal of Neuroscience.

[149]  D. Pandya,et al.  Comparison of prefrontal architecture and connections. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[150]  Alan C. Evans,et al.  Modulation of cerebral blood-flow in the human auditory cortex during speech: role of motor-to-sensory discharges , 1996, NeuroImage.

[151]  S P Wise,et al.  The premotor cortex and nonstandard sensorimotor mapping. , 1996, Canadian journal of physiology and pharmacology.

[152]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[153]  B. Rockstroh,et al.  Increased Cortical Representation of the Fingers of the Left Hand in String Players , 1995, Science.

[154]  J. Staiger,et al.  Increased corpus callosum size in musicians , 1995, Neuropsychologia.

[155]  M. Goodale,et al.  The visual brain in action , 1995 .

[156]  K. Kurata Information processing for motor control in primate premotor cortex , 1994, Behavioural Brain Research.

[157]  J. B. Preston,et al.  Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe , 1994, The Journal of comparative neurology.

[158]  D. Hoffman,et al.  Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. , 1994, Journal of neurophysiology.

[159]  J. Bower The cerebellum as sensory acquisition controller: Commentary on “the underestimated cerebellum” by Leiner et al. , 1994 .

[160]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[161]  J. Tanji,et al.  The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. , 1993, Brain : a journal of neurology.

[162]  S. Bisti,et al.  Light sensitivity, adaptation and saturation in mammalian rods. , 1993, Progress in brain research.

[163]  J. Bloedel Functional heterogeneity with structural homogeneity: How does the cerebellum operate? , 1992 .

[164]  James R. Bloedel,et al.  Coordinate transformation and limb movements: There may be more complexity than meets the eye , 1992, Behavioral and Brain Sciences.

[165]  Alan C. Evans,et al.  Lateralization of phonetic and pitch discrimination in speech processing. , 1992, Science.

[166]  T. Deacon Cortical connections of the inferior arcuate sulcus cortex in the macaque brain , 1992, Brain Research.

[167]  Andrew J. Saykin,et al.  Acute effect of anterior temporal lobectomy on musical processing , 1991, Neuropsychologia.

[168]  I. Peretz,et al.  Processing of local and global musical information by unilateral brain-damaged patients. , 1990, Brain : a journal of neurology.

[169]  D. Pandya,et al.  Frontal lobe connections of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[170]  R. Zatorre,et al.  Pitch perception of complex tones and human temporal-lobe function. , 1988, The Journal of the Acoustical Society of America.

[171]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[172]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[173]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[174]  R. Passingham Premotor cortex: Sensory cues and movement , 1985, Behavioural Brain Research.

[175]  A. Liberman,et al.  The motor theory of speech perception revised , 1985, Cognition.

[176]  M. Petrides Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey , 1985, Behavioural Brain Research.

[177]  Deepak N. Pandya,et al.  Further observations on corticofrontal connections in the rhesus monkey , 1976, Brain Research.